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‘Deep’ Neural Networks Show Temporal Gradient

• How is sequential structure represented at different
hierarchical levels in the brain?

• Combine statistical learning paradigm with neuroimaging:
greater control than naturalistic video[1]or audio[2]

• Use finer-grained manipulations to assess cortical encoding of
sensory dependencies across time[3]

Behaviorial Experiment: Methodological Details
• N = 17, exposed to sequences over 4 sessions (~20,000 images / participant)
• 8 greyscale ‘context’ images, 8 colored images
• Task = warm/cool color detection (50% warm) on colored images, no button press for greyscale
• For human experiment only: context image appears exactly 4 times at start, middle, end of block,

triplets immediately follow each other (for modeling, input more variable to prevent overfitting)
• 90% of blocks follow high and low level order determined by context image
• 10% of blocks follow opposite order rule (high or low level) given context
• Post-test: view a short sequence, choose which of two images comes next -- context (in)congruent

• Low-level order: view first two images in a triplet
• High-level order:
• Block start: view 3x context image A, then 5x context image B
• Block middle: view triplet (starts with context image A) followed by 5x context image A

• Humans show implicit sensitivity to both low and high level
sequential structure after extended learning (~20,000 images)

• Deep layers in neural network (LSTM) more sensitive to high-
level structure of input, but need sufficient depth

Future directions:
• Further behavioral piloting to improve learning of low & high-level structure
• Model comparison with existing sequential learning models (e.g. HAT[4])
• Collection of fMRI + EEG data
• EEG during learning – implicit measures of learning low and high level structure
• fMRI pre-post learning response to context cue images (pattern similarity)
• Comparison with auditory sequence data
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Deeper layers group context images based on longer time-scale order information
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Modeling Hierarchical Sequence Learning
with Recurrent Neural Networks
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Error on Prediction Task Decreases with Learning

Z = 34

No explicit sensitivity
to sequence structure
at post-test
Subjects may have 
ignored grey-scale 
context images
(not task relevant)
But as learn, RTs up, 
accuracy down during 
violation blocks, 
suggesting implicit
sensitivity to low and 
high level structure

Explicit Knowledge of High and Low Level Order Information:
2-Alternative Forced Choice Post-Test
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Pattern similarity to high-level structure is contingent on sufficient network depth 
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Task: Predict next image
Long-Short Term Memory (LSTM)
Fix total n recurrent units (150)

Vary number of stacked layers (1-3)
50 instances per model type

one-hot encoding of 16 images 

All model architectures (1, 2, and 3 recurrent layers)
learn to predict the upcoming image.

Three layer model
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Implicit Knowledge of High and Low Level Order Information:
Response Time and Accuracy in Warm/Cool Color Detection Task

(Normal vs. Structure Violated Blocks)

Video run-through available at
https://www.schapirolab.org/resources

https://www.schapirolab.org/resources

