

Language discrimination in dogs – an fMRI study on the effects of immersion in a new language Marianna Boros¹, Laura Verónica Cuaya¹, Andrea Deme², Raúl Hernández-Perez¹, Attila Andics¹ ¹ MTA-ELTE 'Lendület' Neuroethology of Communication Research Group, ² MTA-ELTE 'Lendület' Lingual Articulation Research Group

marianna.cs.boros@gmail.com

Introduction

Human infants are learning one word per waking hour at the peak period of language acquisition¹. Doing that effortlessly is enabling them to get from babbling at 6 months of age to full sentences by the age of 3 years². They are tuned to spoken language from birth and use computational strategies to detect the statistical and prosodic patterns in language input³. In contrast there is a limit to language capacity in nonhuman species in terms of vocabulary, achieving symbolic communication ability and reciprocal receptive behaviors⁴.

However similarly to infants there is evidence for:

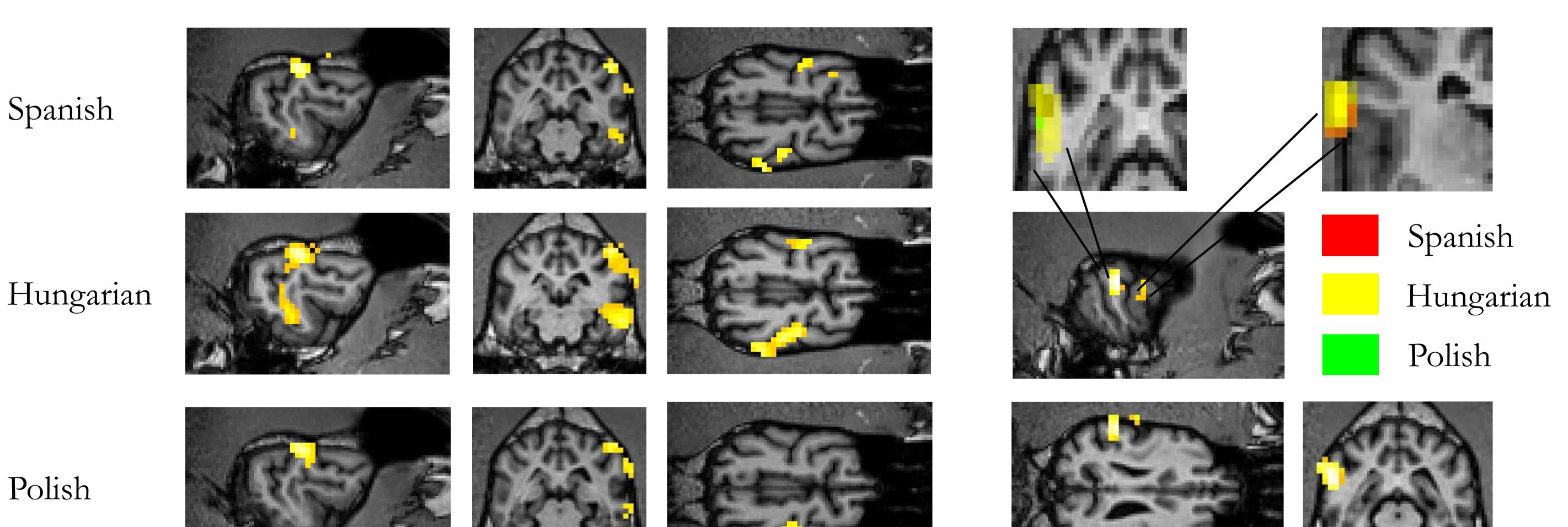
- language discrimination by cotton-up tamarins⁵ and rats⁶;
- sensitivity to transitional probabilities in cotton-up tamarins⁷ and rats⁸.

Dogs live in the same language environment as humans, they attend to spoken words and process them similarly to humans^{9,10}. Consequetly the aim of the present study is to investigate if a neural attunement to the surrounding language can be observed in dogs, similarly to humans.

Method

<u>Subjects</u> N = 2 Mexican dogs recently moved to Hungary <u>Design</u> Longitudinal fMRI study on language immersion: Scanning every 1,5 moths (first scanning within the first month of their arrival)

Segmental experiment: pseudowords (not presented here) Suprasegmental experiment: excerpt from the Little Prince


Stimuli 3 languages with different phonetic structures and intonations:

- 'Native language' Mexican Spanish
- Immersion language Hungarian
- No contact language Polish Aquisition details Sparse sampling, 8 channel coil

Results

T1

T3 - T1

Conclusions

- Rigth hemispheric activation for human language (see Andics et al, 2016) \bullet
- More extended activations for the novel but not for the unknown language learning?
- Traces of neural specialization for the familiarity effect

References

- 1. Berwick et al., 2012
- 2. Kuhl, 2003
- 3. Saffran et al., 1996
- 4. Savage-Rumbaugh, Rumbaugh and Boysen, 1980 5. Ramus et al, 2001
- 6. Toro et al. 2005 7. Hauser et al., 2001 8. Toro et al. 2003 9. Andics et al 2014 10. Andics et al., 2016

Acknowledgements

Funded by the Hungarian National Academy of Science Lendület grant no LP2017 - 13/2017 awarded to Attila Andics