illumina

Enrichment workflow for detecting coronavirus using Illumina NGS systems

A target enrichment sequencing workflow for highly sensitive detection and characterization of common respiratory viruses, including coronavirus strains.

Introduction

Viral infections are a major global health concern, with new infectious diseases continuing to emerge. The 2019 outbreak of novel coronavirus (SARS-CoV-2) that began in Wuhan, China and quickly spread to multiple countries is a particularly concerning example. Coronaviruses (CoV) are a large family of viruses that can infect humans, causing respiratory illnesses ranging from the common cold to more severe diseases, such as Middle East Respiratory Syndrome (MERS-CoV) and Severe Acute Respiratory Syndrome (SARS-CoV). SARS-CoV-2 is a new strain not previously identified in humans. With tens of thousands of confirmed cases around the world and a death toll that has surpassed the SARS epidemic of 2003, the World Health Organization (WHO) has declared the disease associated with SARS-CoV-2 (COVID-19) a public health emergency of international concern¹, highlighting the need for rapid, accurate viral detection.

Next-generation sequencing (NGS) provides an effective, novel way to screen samples and detect viruses without previous knowledge of the infectious agent.² Target enrichment is a resequencing method that captures genomic regions of interest by hybridization to targetspecific biotinylated probes. Target enrichment through hybrid-capture methods allows for highly sensitive detection, without requiring the high read depth needed for shotgun metagenomics sequencing. Additionally, the target enrichment NGS workflow allows for nearcomplete sequence data of targets and opens up applications such as variant analysis for viral evolution or viral surveillance.³ Compared to other targeted resequencing methods, such as amplicon sequencing, enrichment through hybrid capture allows for dramatically larger probe panels with more comprehensive profiling of the target regions. Additionally, the oligo probes used for hybrid-capture protocols remain effective, even within highly mutagenic regions, allowing targeting of rapidly evolving viruses, such as RNA viruses.

Viral enrichment workflow

This application note highlights a streamlined workflow for detecting and analyzing coronavirus using the Nextera[™] Flex for Enrichment Library Preparation kit combined with viral targeting panels, proven Illumina sequencing, and simplified data analysis (Figure 1). This workflow is intended to enrich viral DNA and RNA targets from total nucleic acid extraction. The protocol begins with extraction of nucleic acid samples and subsequent reverse transcription of extracted RNA into double stranded cDNA. Library preparation is performed using the Nextera Flex for Enrichment Kit with IDT for Illumina Nextera UD Indexes. In this protocol, DNA and cDNA undergo tagmentation, clean-up, and pre-enrichment amplification. After amplification, up to 12 samples can be pooled for one enrichment reaction using a panel of oligos that target viral sequences. Probe hybridization is followed by probe capture, enrichment amplification, quantification, and sequencing.

Methods

Sample preparation

To demonstrate the performance of the viral target enrichment panel, a strain of deactivated coronavirus sample, CoV strain OC43 from Microbiologics (QC Sets and Panels: Helix Elite; Cat no. 8217), was used in this study. The coronavirus viral culture sample' was extracted using the QIAGEN QIAmp Viral Mini Kit (QIAGEN, Catalog no. 52904) in a BSL2 laboratory environment (Table 1). 150 ng of extracted RNA was reversed transcribed into cDNA using two different workflows: one derived from Illumina TruSeq RNA reagents and the other using Thermo Scientific Maxima H Minus Double-Stranded cDNA Synthesis Kit (Thermo Scientific, Catalog no. K2561). The viral sample was also

* Extraction was performed on a viral culture sample, not pure viral RNA.

Figure 1: Enrichment workflow for coronavirus detection—The streamlined NGS workflow for coronavirus detection integrates sample preparation, library preparation, target enrichment, sequencing, and data analysis.

Prepare Library | Sequence | Analyze Data

spiked into 95% Universal Human Reference (UHR) background RNA (Agilent Technologies, Catalog no. 74000) and reverse transcribed into cDNA (using the same two methods described above) to mimic sequencing results from patient samples (Table 1).

Additionally, a respiratory viral pool containing four RNA viruses and one DNA virus (Table 2) was extracted using the QIAGEN AllPrep PowerViral DNA/RNA Kit (QIAGEN, Catalog no. 28000-50) in a BSL2 laboratory environment. The maximum volume of total nucleic acid was reversed transcribed into cDNA (without DNase treatment) using a workflow derived from Illumina TruSeq RNA reagents. The viral pool sample was also spiked into 95% Universal Human Reference (UHR) background RNA (Agilent Technologies, Catalog no. 74000) and reverse transcribed into cDNA to mimic sequencing results from patient samples with multiple pathogens present (Table 1).

Table II composition of that campice for analysis	Table 1:	Composition	of viral	samples	for analy	ysis
---	----------	-------------	----------	---------	-----------	------

Sample	Composition ^a	Reference genome	
CoVOC43	150 ng CoV OC43 RNA	AY391777.1 Human coronavirus OC43	
CoVOC43_95UHR	7.5 ng CoV OC43 RNA and 142.5 ng UHR RNA	AY391777.1 Human coronavirus OC43	
ViralPool	Max volume viral pool total nucleic acid (8.5 µl)	See Table 2	
ViralPool_95UHR	5% viral pool total nucleic acid and 95% UHR RNA by volume	See Table 2	

 The recommended minimum RNA/total nucleic acid input for reverse transcription is 10 ng. For best results, reverse transcription should be performed on freshly extracted nucleic acid samples.

Table 2:	Composition	of	viral	pool
----------	-------------	----	-------	------

Nucleic acid type	Reference genome
RNA	Influenza A/Michigan/45/2015
RNA	Influenza B/Colorado/06/2017
RNA	NC_001796.2
RNA	AY353550.1
DNA	AY594255.1
	Nucleic acid type RNA RNA RNA RNA DNA

Library preparation

Sequencing-ready libraries were prepared using cDNA from the CoV sample (CoVOC43), the viral pool sample (ViralPool), and both spike-in samples (CoVOC43_95UHR and ViralPool_95UHR) with the Nextera DNA Flex Pre-Enrichment Library Prep and Enrichment Reagents Kit (Illumina, Catalog no. 20025524) and IDT for Illumina Nextera DNA UD Indexes (Illumina, Catalog no. 20027213). Total DNA input recommended for Nextera Flex for Enrichment tagmentation is 10–1000 ng.

After amplification, samples were split into separate pools for enrichment based on sample type (CoVOC43, CoVOC43_95UHR, ViralPool, and ViralPool_95HR). Enrichment reactions were performed with one of two probe pools (Table 3). The first consists of the Pan-Viral Panel (Twist Biosciences, Catalog no. 100516), supplemented with additional oligos to detect SARS-CoV-2. Oligos were designed by tiling the complete SARS-CoV-2 genomic sequence (available on NBCI, MN908947.3) with 80-bp probes (Table 3). The second is the Respiratory Virus Oligos Panel (Illumina, Catalog no. 20042472), which features ~7800 probes designed to detect respiratory viruses, recent flu strains, and SARS-CoV-2, as well as human probes to act as positive controls (Table 3 and Table 6). The CoVOC43 and CoVOC43_95UHR sample pools were enriched with both panels in two separate enrichment reactions. The ViralPool and ViralPool_95UHR sample pools were only enriched using the Respiratory Virus Oligos Panel. After enrichment (Figure 2), the prepared libraries were quantified, pooled, and loaded onto the MiSeq[™] System for sequencing.

Table 3: Probe pools used for viral enrichment

Probe pool	Composition
Pan-Viral/ SARS-CoV-2	Pan-Viral Panel supplemented with probes to detect SARS-CoV-2
Respiratory Virus Oligos Panel	Panel with probes designed to detect respiratory viruses, current flu strains, and SARS-CoV-2, as well as human probes to act as positive controls

Figure 2: Enrichment chemistry—Prepared libraries undergo enrichment with a viral target panel, followed by amplification, quantification, and sequencing.

Sequencing

Prepared libraries can be sequenced on any Illumina instrument. The benchtop iSeq[™] 100, MiniSeq[™], and MiSeq Systems are particularly well suited due to the low read requirements for these samples. In this study, libraries prepared from the viral samples were denatured and diluted to a final loading concentration of 10 pM, according to the MiSeq System Denature and Dilute Libraries Guide (Document no. 15039740 v10) and sequenced on the MiSeq System at 2 × 151 bp read length[↑] using MiSeq v3 reagents. Aliquots of all libraries were also sequenced prior to probe hybridization to determine the fold change of the enrichment reaction.

Virus titer, RNA quality, and the number of reads per sample impact the number of virus-specific reads obtained and coverage of the viral genome. As a general guideline, the read recommendation for this workflow is 500k reads per sample but these numbers can be variable and this is only a recommended starting point.

Data analysis

For automatic on-instrument analysis, sequencing runs were setup in Local Run Manager (LRM) using the Resequencing Analysis Module. This module allows for input of all run information and reference genome selection for subsequent sequence alignment. Users can upload reference genomes directly to the instrument, allowing for easy customization. Analysis is kicked off automatically after sequencing is complete, so users can interpret results as quickly as possible. The Resequencing module provides alignment, coverage, and small variant data as well as FASTQ, BAM, and VCF files for use in other data analysis pipelines, if desired (Figure 3).

The IDbyDNA Explify Platform provides an easy-to-use solution for in-depth data analysis that features robust data quality control (QC), standardized result interpretation, carefully curated databases, and custom report generation. Data analysis is based on k-mers and alignment steps, including protein-level detection of viruses, which increases the ability to identify novel and highly divergent viruses. The platform can be accessed in BaseSpace[™] Sequence Hub.

Figure 3: Enrichment analysis workflow—Sequencing runs are set up in LRM with data analysis automatically proceeding after the run is complete. Additional analysis with third-party applications is available, if desired.

Results

After library preparation and sequencing, the LRM Resequencing Analysis Module (v2.5.56.11) was used to align each sample to the coronavirus OC43 reference genome, as described in the Local Run Manager Resequencing Analysis Module Workflow Guide (Document # 100000002705 v01).

Evaluation of reverse transcription and detection of CoV with the LRM Resequencing Module

In this study, two different reverse transcription kits were used to generate cDNA for library preparation – a commercially available kit from Thermo Scientific and a workflow derived from Illumina TruSeq RNA reagents (see Methods for details). For CoVOC43 samples, results showed that percent alignment to the reference genome were > 99% for the Illumina reverse transcription method and > 97% for the Thermo Scientific method, with similar levels for both viral panels (Figure 4). Percent alignment of the spike-in samples were > 64% and > 19% for the Respiratory Virus Oligos Panel and Pan-Viral/SARS-CoV-2 Panel, respectively, with similar results for both reverse transcription methods (Figure 4).

Figure 4: Equivalent performance with different cDNA kits—The percent aligned reads for viral samples CoVOC43 and CoVOC43_95UHR reverse transcribed with the two different cDNA kits (see Methods section) are plotted before and after enrichment with the Respiratory Virus Oligos Panel and the Pan-Viral Panel.

The percent aligned reads from samples pre- and post-enrichment were compared to calculate the fold change of enrichment, as a measure of the success of the target capture and hybridization reaction. Results showed significant increases in fold enrichment for the CoV samples analyzed regardless of reverse transcription method. This was especially true for CoVOC43_95UHR samples, which showed >640-fold enrichment for the Respiratory Virus Oligos Panel and >190-fold enrichment for the Pan-Viral Panel (Table 4).

The mean coverage provides an overview of the depth of coverage for each base in the reference genome, identifying any regions that may not have been sequenced. Enrichment with viral target probes greatly increased the mean coverage of the viral sequence for all samples, regardless of reverse transcription method (Table 5).

 $[\]dagger$ $\,$ The Nextera Flex for Enrichment protocol recommends at least 2 \times 101 bp read length.

Respiratory Virus Oligos Panel					
	Illumir	na TruSeq RNA	Thermo I	Maxima H Minus	
Fold	CoVOC43	CoVOC43_95UHR	CoVOC43	CoVOC43_95UHR	
enrichment	5.5×	646×	3.1×	748×	
Pan-Viral/SARS-CoV-2 Panel					
	Illumina TruSeq RNA		Thermo I	Maxima H Minus	
Fold					
Fold	CoVOC43	CoVOC43_95UHR	CoVOC43	CoVOC43_95UHR	

Table 4: Enrichment metrics using LRM Resequencing Module

Table 5: Mean coverage of CoVOC43 with Respiratory Virus Oligos Panel

cDNA kit	CoVO	C43	CoVOC43_95UHR		
	Unenriched	Enriched	Unenriched	Enriched	
Illumina TruSeq RNA	427.1	3283.5	2.6	2437.3	
Thermo Maxima H Minus 987.0 3861.4 4.2 303					
Mean coverage metrics have been normalized to 1M reads per sample.					

Analysis with IDbyDNA Explify

The Explify Platform identified the spiked coronavirus (Figure 5) and all five viruses in the viral pool[‡] (Figure 6). The Explify Platform provided viral consensus genome sequences, coverage plots, and the demonstrated ability to detect co-infections with other viruses, bacteria, fungi, or parasites (Figure 5 and Figure 6).

Figure 5: Identification of OC43—IDbyDNA identified OC43 spiked into UHR RNA, regardless of cDNA kit or viral probe pool, with exceptional coverage of the viral genome. Data was downsampled to 1M reads per sample.

Figure 6: Identification of viral pools—IDbyDNA identified all RNA and DNA viral strains in the viral pool using the Respiratory Viral Oligos Panel. Data was downsampled to 1M reads per sample.

The Explify Platform also demonstrated that CoVOC43_95UHR enrichment data from both the Pan-Viral/SARS-CoV-2 Panel and the Respiratory Virus Oligos Panel showed equivalent coverage to shotgun metagenomics sequencing data⁴ (Figure 7), demonstrating that the enrichment workflow with viral target probe pools does not introduce coverage bias compared to the shotgun method.

Figure 7: Equivalent performance with shotgun method – Enrichment with viral panels showed equivalent performance and coverage to shotgun metagenomics sequencing.

The viral pool was not verified with orthogonal techniques, so there is no guarantee of equivalent representation of each virus.

Table G. Vinnes	towated b		Deeniveten	· \/:	Oligion Domol
Table 6. Viruses	s iaroeieo r	iv me	Resolution	/ virus	Unioos Paner
10010 01 110000	, tai gotoa k	<i>y</i>	ricopilator	11100	ongoo i anoi

Human coronavirus 229E	Human parainfluenza virus 1
Human coronavirus NL63	Human parainfluenza virus 2
Human coronavirus OC43	Human parainfluenza virus 3
Human coronavirus HKU1	Human parainfluenza virus 4a
SARS-CoV-2	Human metapneumovirus (CAN97- 83)
Human adenovirus B1	Respiratory syncytial virus (type A)
Human adenovirus C2	Human Respiratory syncytial virus 9320 (type B)
Human adenovirus E4	Influenza A virus (A/Puerto Rico/8/1934(H1N1))
Human bocavirus 1 (Primate bocaparvovirus 1 isolate st2)	Influenza A virus (A/ Korea/426/1968(H2N2))
Human bocavirus 2c PK isolate PK-5510	Influenza A virus (A/New York/392/2004(H3N2))
Human bocavirus 3	Influenza A virus (A/goose/ Guangdong/1/1996(H5N1))
Human bocavirus 4 NI strain HBoV4- NI-385	Influenza A virus (A/Zhejiang/DTID- ZJU01/2013(H7N9))
KI polyomavirus Stockholm 60	Influenza A virus (A/Hong Kong/1073/99(H9N2))
WU Polyomavirus	Influenza A virus (A/ Texas/50/2012(H3N2))
Human parechovirus type 1 PicoBank/HPeV1/a	Influenza A virus (A/ Michigan/45/2015(H1N1))
Human parechovirus 6	Influenza B virus (B/Lee/1940)
Human rhinovirus A89	Influenza B virus (B/ Wisconsin/01/2010)
Human rhinovirus C (strain 024)	Influenza B virus (B/ Brisbane/60/2008)
Human rhinovirus B14	Influenza B virus (B/ Colorado/06/2017)
Human enterovirus C104 strain: AK11	Influenza B virus (B/ Washington/02/2019)
Human enterovirus C109 isolate NICA08-4327	Human control genes

Summary

The identification and characterization of emerging viruses is central to improving public health. In these situations, NGS is a powerful method for broad-range detection to identify known and emerging viruses. Using Nextera Flex for Enrichment with panels that target viral pathogens enables researchers to obtain genomic data that can confirm the presence of CoV and continue with further analyses such as genotyping and variant analysis. The agnostic design allows for widespread identification of pathogenic viruses across all sample types of interest and the use of unique dual indexes reduces the risk of any indexing crossover from multiplexing samples. This easy-to-follow workflow, including proven Illumina sequencing, enables detection and characterization of pathogen outbreaks such as the novel SARS-CoV-2.

Learn more

Learn more about viral sequencing methods at www.illumina.com/ areas-of-interest/microbiology/infectious-disease-surveillance.html

Learn more about LRM analysis at www.illumina.com/products/bytype/informatics-products/local-run-manager.html

References

- World Health Organization. WHO Director-General's statement on IHR Emergency Committee on Novel Coronavirus (2019-nCoV). www.who.int/ dg/speeches/detail/who-director-general-s-statement-on-ihr-emergencycommittee-on-novel-coronavirus-(2019-ncov). Accessed January 30, 2020.
- Bulcha B. Review on viral metagenomics and its future perspective in zoonotic and arboviral disease surveillance. *J Biol Agric Healthcare*. 2017;7(21):35–41.
- 3. Gaudin M and Desnues C. Hybrid Capture-Based Next Generation Sequencing and Its Application to Human Infectious Diseases. *Front Microbiol.* 2018;9:2924.
- Illumina (2020) Comprehensive workflow for detecting coronavirus using Illumina benchtop systems. Accessed March 19, 2020.

Illumina • 1.800.809.4566 toll-free (US) • +1.858.202.4566 tel • techsupport@illumina.com • www.illumina.com © 2020 Illumina, Inc. All rights reserved. All trademarks are the property of Illumina, Inc. or their respective owners. For specific trademark information, see www.illumina.com/company/legal.html. 1270-2020-002-A QB9563

