Dynamic feedback valuation impacts learning in a probabilistic two-armed bandit task

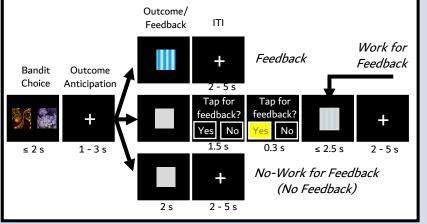
Center for
Cognitive
Neuroscience

Benjamin S. Muzekari¹, Shabnam Hakimi¹, Kelly H. Eom¹, Sonakchhi Shrestha¹, Steph Ng¹, Alannah M. Rivera-Cancel¹, John N. Thorp², Savannah R. Erwin¹, Rachael N. Wright¹, Nancy L. Zucker¹*, and R. Alison Adcock¹*

Duke University¹, Columbia University²

Introduction

- Performance feedback aids successful learning¹
- Contextual and personality factors relating to learning goals influence feedback valuation²


Research questions:

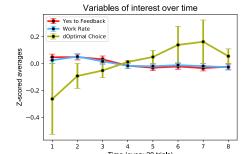
- How much do learners value feedback?
- How does feedback valuation influence motivated learning and task performance?

1. van Duijvenvoorde et al., 2008, *Journal of Neuroscience. 2.* VandeWalle et al., 2000, *Journal of Applied Psychology.*

Informative Bandit Task

- (N = 102) Subjects were presented with 160 choices between two bandits, (p_{win} = 0.8 or 0.6).
- Participants received either veridical feedback, noninformative feedback, or non-informative feedback with the option to work for feedback.
- Working for feedback required pressing the spacebar as as many times as possible to reveal the outcome.

Trial type distribution


Distribution of feedback outcomes	
Types	Percentage of trials
Veridical	60 %
Non-informative (No work option)	20 %
Non-informative (Work option)	20 %

Analysis methods

To examine the dynamics of performance throughout the task, we calculated 20-trial moving performance averages for each bandit. We then calculated the distance between the two curves, *d*Optimal, reflecting the relative selection of the better compared to the worse bandit.

Increased dOptimal choice suggests subjects are choosing the better bandit more often than the worse bandit.

Feedback valuation reflects information content

dOptimal choice and yes to feedback were negatively correlated, r(100) = -.88, p < .01.

dOptimal choice and work rate were negatively correlated, r(100) = -.73, p < .05.

Information valuation predicts overall performance

Performance was calculated by the total number of times a subject selected either fractal and it yielded a reward.

Information valuation predicts overall individual performance

On a single-subject level, we calculated a time series correlation between dOptimal choice and work rate and used the outcome in a linear regression, which significantly predicted overall performance, F(1, 102) = 3.967 p < .05.

Discussion

- Information valuation predicts overall performance.
- Feedback valuation changes to reflect its information content.
- Time series correlations show as choice optimality increases, both the decision to work for feedback and work rate decrease.
- Feedback valuation is an important component of motivated learning.