Novel objects in a rapid serial visual presentation (RSVP) stream elicit an attentional blink

Motivation

Visual search is faster and more efficient when the distractors are highly familiar.

Find X	Find X	Find m
$ \begin{bmatrix} \mathbf{F} & \mathbf{G} & \mathbf{S} & \mathbf{Z} & \mathbf{F} \\ \mathbf{N} & \mathbf{E} & \mathbf{P} & \mathbf{K} \\ \mathbf{X} & \mathbf{P} & \mathbf{K} \\ \mathbf{F} & \mathbf{R} & \mathbf{L} & \mathbf{N} & \mathbf{G} \\ \mathbf{D} & \mathbf{E} & \mathbf{K} & \mathbf{J} \\ \mathbf{S} & \mathbf{N} & \mathbf{F} & \mathbf{Z} & \mathbf{P} \\ \mathbf{Z} & \mathbf{B} & \mathbf{D} \\ \mathbf{R} & \mathbf{E} & \mathbf{P} & \mathbf{S} & \mathbf{K} \\ \mathbf{B} & \mathbf{Z} & \mathbf{S} & \mathbf{K} \\ \mathbf{B} & \mathbf{J} & \mathbf{R} & \mathbf{G} & \mathbf{J} \\ \mathbf{P} & \mathbf{K} & \mathbf{N} & \mathbf{E} & \mathbf{B} & \mathbf{J} \\ \end{bmatrix} $	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
Familiar Distractors → Efficient	Unfamiliar Distractors → Inefficient	Holds for co

Search efficiency linked to functional receptive field size in inferior temporal cortex. (Mruczek & Sheinberg, 2007)

Surprise-induced blindness (SiB) (Asplund et al., 2010; see also Manahova et al., 2020)

- Unexpected, task-irrelevant distractors
- disrupt serial search.
- Large effect at ~390 ms, but quickly habituates after ~2 trials.
- Modest effect at ~130 ms, persists over many trials.
- But, categorically distinct distractors.

Does object familiarity affect serial search?

Surprise stimulus

Target ->

Do novel objects (from same category) induce a blink?

Building in Familiarity

- 14 participants, 6 sessions on sepearate days • Images randomly assigned as targets (8), familiar distractors (20), or novels (2 per run)
- Serial Search (RSVP) Task
- Identify targets amongst a continuous stream of distractor images

	5	0	U				U	
•••		•		•	M			
	Stim Dur	ISI				К	nown Targe	t

Day 1: Target Training

(variable)

Learn response (left/right) associated with each of 8 target images

- 5 runs targets-only, Stim dur until response, auditory & visual feedback
- 8 targets x 10 reps = 80 trials/run

(variable)

- 5 runs RSVP, 400/400 ms (Stim/ISI dur), "familiar" distractors, auditory feedback • Target appears every ~1.6 to 3.2 s
- 2 sides x 20 reps = 40 trials/run + 1 catch (no target) trial (at start of run)

Day 2: RSVP Training

- 1 run targets-only, auditory & visual feedback
- 5 runs RSVP, 400/400 ms (Stim/ISI dur), "familiar" distractors, auditory feedback
- 8 runs RSVP, increasing pace from \sim 300/300 ms \rightarrow \sim 100/100 ms (stim dur/ISI)
- Target appears every ~1.6 to 3.6 s
- 2 sides x 20 reps = 40 trials/run + 6 catch trials (1 at start of run)

Day 3: Distractor Familiarity Phase

- 1 run targets-only, auditory & visual feedback
- 10 runs RSVP, 93/93 ms (Stim/ISI dur)
- Target appears every ~1.6 to 3.6 s
- 2 sides x 18 reps = 36 trials/run + 12 catch (1 at start of run)

Known larget

Ryan E.B. Mruczek College of the Holy Cross

Summary

Novel distractors induce a brief "attentional blink" during serial search.

Take-Home Points

- Persistent effects on reaction time at short SOAs
- Some evidence for habituation at longer SOAs
- Similar to Surprise-induced Blindness (SiB), but cannot be explained by systematic feature differences between distractors and targets.

Future Directions

- Redesign task to eliminate predictability of target following novel distractor.
- Near-ceiling performance \rightarrow Add noise?
- Explore electrophysiological correlates.

Relevant Physiology

Lower spike rates, more selective responses, and stronger LFPs in inferior temporal cortex evoked by familiar objects. (e.g., Anderson et al., 2008)

References and Funding

Anderson B., Mruczek, R.E.B., Kawasaki, K. & Sheinberg, D.L. (2008). Cerebral Cortex 18:2540-52. DOI: 10.1093/cercor/bhn015

Asplund, C.L., Todd, J.J., Snyder, A.P., Gilbert, C.M., & Marois, R. (2010). Journal of Experimental Psychology: Human Perception & Performance, 36(6): 1372-81. DOI: 10.1037/a0020551 Manahova, M.E., Spaak, E., & de Lange, F.P. (2020). Journal of Cognitive Neuroscience, 32(4), 722-733.

DOI: doi.org/10.1162/jocn_a_01507 Mruczek, R.E.B. & Sheinberg, D.L. (2005). Perception & Psychophysics, 67(6): 1016-31. DOI:

10.3758/bf03193628

Mruczek, R.E.B. & Sheinberg, D.L. (2007). Journal of Neuroscience, 27: 8533-45. DOI: 10.1523/JNEUROSCI.2106-07.2007 Sulykos, I., Kecskés-Kovács, K. & Czigler, I. (2015). Brain Research, 1626: 108-117. DOI:

10.1016/j.brainres.2015.02.035

Support: Robert L. Ardizzone ('63) Fund for Tenure Track Faculty Excellence

F117 COLLEGE OF ТНЕ Holy Cross

