Predictive models of I1Q from functional connectivity data
may not be sex specific
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® Predictive models have long been used to predict
behavioral measures.
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® But the question is if these models are sex specific? If a
model built on one group is generalizes to the other?
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Figure 1:Network and degree plots and correlation of sex spe- where Y € RY is the vector of IQ) measures, 5 € R" is the coefficient vector and X € R**¥ is the feature Email: javid.dadashkarimi@yale.edu

cific models. matrix.
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