

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 1 | P a g e

Improve OCR Accuracy on
Color Documents

Use Image Detergent™ to Clean Up Color Document Images Prior to

OCR for Improved Results

Abstract

This white paper confirms that industry-standard practices to clean color document
images can be improved to produce higher OCR accuracy. Image Detergent™ from
Accusoft Pegasus improves OCR accuracy by 5-10% more than a standard Smoothing
filter. This white paper leads the reader through the testing that proves it.

Standard smoothing algorithms provide a good way to reduce background noise and
improve the appearance of scanned documents. However, they are also highly
destructive to text and other data commonly found on a document image. The Image
Detergent filter within the ScanFix® Xpress software development kit (SDK) from
Accusoft Pegasus works on a different principle than other smoothing filters, and is
intended specifically for use on color document images. This paper explores the impact
of the Image Detergent smoothing filter on color document images containing various
text and background colors. The two items quantitatively measured were OCR accuracy
and cleaned up file size. OCR accuracy was measurably improved using Image
Detergent, and file sizes for both lossless and lossy compression methods were
significantly smaller for the images after processing with Image Detergent.

Image Detergent is only available within ScanFix Xpress from Accusoft Pegasus. A trial
version can be downloaded here: http://www.accusoft.com/scanfix.htm.

http://www.accusoft.com/scanfix.htm

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 2 | P a g e

Figure 1 Before (top) and after (bottom) clips from an image cleaned with Image Detergent

Introduction

Noise is a common problem in all areas of digital signal processing, and the realm of
document imaging is no exception. Noise in images typically shows up as specks or
variations in color where none is desirable. An example of this can be seen above; the
pink background in the top half of the image consists of many different shades of pink.
This variation contains no useful information, and could be replaced by a solid color, as
in the bottom half. Noise comes from many sources, including physical sources such as
variations in paper color, or dirt and lint on the scanner or paper, as well as software
sources, such as lossy compression. Lossy compression, such as used by the JPEG
compression algorithm, produces very high degrees of compression, but at the cost of
changing the pixels in the image—hence the “lossy” description. One of the common
side effects of the JPEG compression is specks that surround sharp transitions in color.

Smoothing filters are a common way to remove noise from color images, by blending
adjacent pixels together to dilute the impact of small changes in the colors of a region.
This technique is known in signal processing as a low pass filter, because it allows low
frequency data, which changes gradually over time, to pass through, and blocks high
frequency data, which changes quickly. In image processing, a smoothing filter, like
most other filters, is a type of morphological filter, meaning it changes the morphology or
shape of the image. The morphological filters, in addition to the desirable behavior of
reducing noise, also have the side effect of blurring and softening sharp edges, as
shown below.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 3 | P a g e

Figure 2 A noisy signal (upper left) smoothed with progressively more aggressive smoothing filters

(lower left, top right, lower right) shows less and less noise, but more and more flattening of the

sharp edge in the original signal.

This may not be a concern in images such as photographs, which have little high
frequency data, but in document images, which are full of sharp edges and thin lines—
both of which contain many high frequencies—a low pass filter can be very destructive.
The Image Detergent filter is designed to address exactly this situation.

Rather than working morphologically, by blending pixels found in the same region in the
image, Image Detergent works in the colorspace to provide smoothing. A colorspace is
best envisioned as a cube, with an X, Y, and Z axis. In the most common colorspace,
RGB, the axes correspond to the percentage of red, green, and blue that are mixed
together to form any color in the colorspace. Image Detergent works in the RGB
colorspace, taking colors that are in close proximity in the colorspace, and pulling them
together. Since the location of the pixels in the image is not changed, no blurring of lines
or edges occurs, but the regions of colors cleaned by Image Detergent end up smooth
and noise-free.

In this paper, the impact of Image Detergent on various document processing operations
will be explored. The baseline data set consists of a number of documents, the “raw”
images, which have been captured on a color scanner and stored in an uncompressed
format. These raw images will be filtered and compressed using different image
processing methods, and the resulting modified images will be compared to determine
the impacts of these image processing methods on optical character recognition and file
size using common lossy and lossless compression algorithms.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 4 | P a g e

The Hypothesis for OCR Recognition

Image Detergent will improve OCR recognition, and reduce the image size of
compressed images.

The Approach

Binarize original images, apply OCR and measure recognition accuracy. Next, apply
Image Detergent to those same original images, then binarize them, apply OCR, and
measure recognition accuracy. Compare against initial results. Take the same
approach on image file size.

The Data Set

The data set consists of a number of documents printed on a color laser printer on
colored paper. Each document has the same text repeated in differing font faces using
14 and 12 point text.

Paper color Font face Ink color

White Arial Black

Ivory Times New Roman Red

Blue Courier Green

Pink

Blue

Yellow

The text consisted of the following, reproduced for all desired combinations:

14 point Color scanning gives you more information. Now you can use it.
The quick brown fox jumped over the lazy hen. Now is the time for all
good men to come to the aid of their country.

ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopqrstuvwxyz
1234567890
~!@#$% &̂*()_+

The documents were scanned using an older Fujitsu® 4750C color scanner to simulate
a common production environment. The documents were scanned at 150, 200, and 300
dpi, but the 200 and 300 dpi images were re-sampled to 150 dpi for this test. The images
were stored in a lossless TIFF format. The total number of scanned pages used in the

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 5 | P a g e

analysis was 180. The scanner default settings automatically adjusted the brightness on
the Ivory and White paper, resulting in a background color whose average was very near
pure white. The blue, pink, and yellow papers yielded colors of approximately 0xb0f0f8,
0xf8c8d8, and 0xf8f8c8.

The resolution of 150 dpi was determined to be the borderline resolution for reliable
OCR of 12 point and larger text, and the analysis focused on the 12 and 14 point text.
By focusing on the borderline cases, changes in OCR accuracy are readily determined.
The image shown in Figure 1 of this white paper consists of green ink on pink paper, and
it provided a good illustration of the difficulties encountered when recognizing characters
from a color image.

Cleanup method

The method used to generate the data for this analysis used three software development
toolkits from Accusoft Pegasus. Each toolkit is focused on a different imaging field, and
all the toolkits are designed to easily work together. The ImagXpress toolkit is a general
purpose photo and document imaging SDK, and it is used for opening and
decompressing the images. ImagXpress supports a wide range of file formats (see
www.accusoft.com/imagxpressformats.htm), including popular document imaging
formats such as TIFF and JBIG2, and color formats such as JPEG and JPEG 2000.
SmartZone™, part of the FormSuite™ SDK, is a zonal OCR tool with an easy to use
programmer interface (www.accusoft.com/formsuite.htm). The third toolkit used in this
test is ScanFix Xpress, the scanned image cleanup toolkit.

Each image was loaded into memory using ImagXpress and subjected to two different
processes. The first process was a simple binarization, using the ScanFix Binarize()
method, with the minimum and maximum thresholds set to 128 and 255 respectively.
The image was then processed using SmartZone, and the resulting text stored for
comparison.

The second process used the ScanFix Image Detergent method to clean up the image
background color. The Image Detergent object was set up to clean four colors,
corresponding to pure white, and the average background colors for the blue, pink, and
yellow page as estimated using an industry standard utility program. This method was
chosen for simplicity, and because it allowed a greater control over the radius than the
AutoImage Detergent() method. The radius used for each color was around half of the
distance from each color to its nearest neighbor, to prevent overlapping cleanup regions.

http://www.accusoft.com/imagxpressformats.htm
http://www.accusoft.com/formsuite.htm

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 6 | P a g e

Here is a diagram of the cleanup operation, showing the effected regions of the
spectrum:

Figure 2 Before and after spectrum showing the cleaned regions of the colorspace.

After the Image Detergent operation, the image was binarized with the same settings as
the first process.

Test Results:

By providing a cleaner input, the binarization process produced a better quality output,
which increased the recognition rate when the images were read using SmartZone.

OCR impact

Figure 3 Binarizing alone (left) compared to Image Detergent followed by binarization (right). The

thin areas of the characters proved difficult for the binarization process, but a cleaned image

resulted in fewer broken characters.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 7 | P a g e

The OCR impact of the Image Detergent process was calculated by comparing the
output from each process, and counting the number of characters correctly matched,
and subtracting one for characters that were dropped, added, or misread. Overall,
recognition rates were 2% higher for 14 point and 5% higher for 12 point text with the
Image Detergent operation than without it. While the 2% increase seems small, it
translated into a 63% increase in the number of blocks of 14 point text read with 95% or
greater accuracy. For 12 point text, it corresponded to a 21% increase in blocks read
with over 80% accuracy. The reason for this change was the reduction in noise, and
relative increase in contrast between the background and foreground colors.

Comparison with Standard Smoothing Algorithm

Figure 4 Comparison of OCR results with raw image and images processed with a 3x3 Average filter

and the Image Detergent filter.

Compared to other smoothing algorithms however, the results are dramatically different.
Replacing the Image Detergent filter with a standard smoothing filter (a 3x3 pixel
average filter) also reduced the background noise, but at great cost to the machine
readability of the characters in the documents. Readability dropped from an averate of
93% with Image Detergent to 41% with the average filter. The reason for this is that
while smoothing does even out the background color, it also significantly deteriorates the
sharpness of the characters. This decrease in sharpness leads to dramatically poorer
performance when the image is binarized, as shown in Figures 4 and 5.

0

10

20

30

40

50

60

70

80

90

100

14 point 12 point

Raw

3x3 Average filter

ImageDetergent

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 8 | P a g e

Figure 5 Image Detergent (top) compared to a 3 x 3 pixel average filter (bottom). Both clean the

background, but the blurred text is far more difficult to binarize, as it has greatly reduced contrast
with the background.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 9 | P a g e

Figure 6 JPEG compression reduces OCR accuracy on marginal images, but the use of Image

Detergent can regain a significant percentage of the lost accuracy.

As shown in Figure 6, when the test images were compressed as 50% quality JPEG
images, the OCR quality went down for both the images with and without Image
Detergent, as would be expected for such marginal images. However, performance on
the non-Image Detergent images declined more; recognition dropped 12% on 14 and
13% on 12 point text when JPEG compression was used. When Image Detergent was
applied to the JPEG images after decompression and before OCR, it significantly
reduced the negative impact of the JPEG artifacts, reducing the impact of the JPEG
degradation by as much as 70%, dropping those percentages to 7% and 9%
respectively. Figure 7 shows the artifacts produced by JPEG’s compression algorithm,
and how Image Detergent removes many of those artifacts from the image.

0

10

20

30

40

50

60

70

80

90

100

14 pt 12 pt

Raw

JPEG

JPEG + ID

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 10 | P a g e

Figure 7 Original (top), 50% quality JPEG (middle), and cleaned JPEG (bottom). The JPEG

compression actually cleans the background some, as the lossy compression algorithm discards
the high frequency data, but it also creates noise in the form of compression artifacts, which appear

as specks and brightness variance around the characters. Image Detergent helps clean up those

artifacts.

The Hypothesis for Reducing Output File Size

Noise, while not desirable, is still data, and can significantly impact the file size in
compressed image formats. Removing the noise from the image before it is
compressed can reduce file sizes, in some cases very dramatically.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 11 | P a g e

The Approach

For the file size comparison, each image was cleaned with Image Detergent using the
same settings that were used for OCR testing, and the results were stored in a lossless
format. The original and cleaned images were then compressed using two formats, a
lossy and a lossless format. The lossy format used was JPEG, using a 50% quality
level, comparable to the Independent JPEG Group’s reference implementation. The
lossless format used was TIFF with LZW compression.

The Data Set

The images used were the same as were used for the OCR testing. Each image was
compressed using the lossy and lossless formats, and the file sizes of the compressed
original and cleaned images were compared to calculate the difference. The differences
are shown in Figure 8, as a percentage of the original file size. A value of 90 indicates
the compressed Image Detergent file was 90% the size of the compressed original file.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 12 | P a g e

Test Results

Figure 4 Percentage file size reduction with Image Detergent. In all cases, the compressed file size
was reduced. The most dramatic changes were in the Pink and Blue colored pages, which had the

most noise.

When comparing the sizes of the original and the cleaned images using JPEG
compression at a 50% quality level, the cleaned images generated file sizes 10%
smaller on average. With a lossless compression, such as LZW compressed TIFF, the
change is far more dramatic, with an average reduction of 62% (though the LZW files
are still significantly larger than the JPEG files).

Reductions in compressed file sizes were most dramatic on images with strong color
backgrounds, which contained the most noise in the original images. With those images
compression improvements of 70% to 90% were achieved using LZW. Blue showed the
greatest improvement in the JPEG tests, with 20% reductions in compressed file sizes.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 13 | P a g e

Conclusions

Traditional color smoothing filters are best kept to traditional color images. For
document images, a different approach is needed, and the ScanFix Xpress v6 toolkit
provides the tools you need. Image Detergent is just one of the many features provided
to help deal with problems unique to color documents. Other features include color
deskew and crop, color dropout technologies such as Color Drop and Virtual Bulb, Color
Detect for sorting and segmenting images, automatic brightness and contrast
adjustment, as well as a wide range of traditional color image filters for tasks such as
smoothing and sharpening.

This paper has shown that using Accusoft Pegasus’ ScanFix Xpress v6 SDK to apply
Image Detergent to color images results in smaller files sizes for image archival, and
higher accuracy of OCR recognition than standard imaging industry practices of
smoothing filters.

Find a full list of ScanFix Xpress SDK image enhancement features and download a
demo application or trial version of the ScanFix Xpress SDK here.

Sample code you could use to test with your own sample images is provided in the next
section. Download the SmartZone and ScanFix Xpress SDKs from www.accusoft.com to
execute the sample code.

Please contact us at sales@accusoft.com or support@accusoft.com for more
information.

Source Code Sample

This section demonstrates how to use ScanFix in conjunction with ImagXpress and
SmartZone to load, clean, and OCR a document image. This code was used to
generate the data used in this whitepaper.

/*

 * This is a simple C# command line appliation that accepts an image filename

 * as a command line argument, and generates a cleaned color image, a binarized

 * image, and a text file containing the ASCII results of the OCR operation.

 */

namespace ConsoleApplication1

{

 class Program

 {

 static void Main(string[] args)

 {

 // Here, instnaces of the three components used in this sample are created

 PegasusImaging.WinForms.SmartZone2.SmartZone smartzone =

http://www.accusoft.com/scanfix.htm
http://www.accusoft.com/index.htm

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 14 | P a g e

new PegasusImaging.WinForms.SmartZone2.SmartZone();

 Accusoft.ScanFixXpressSdk.ScanFix scanfix =

 new Accusoft.ScanFixXpressSdk.ScanFix();

 Accusoft.ImagXpressSdk.ImagXpress imgX =

new Accusoft.ImagXpressSdk.ImagXpress();

 /*

 * Here you will need to set up the component licenses, if you have them;

 * if not, then the program will run, but will display dialog boxes asking

 * you to register the products.

 */

 // create ImagXpress image object, so that we can use it to load and save

 // the image data

 Accusoft.ImagXpressSdk.ImageX image;

 // load the file into the image object

 image = Accusoft.ImagXpressSdk.ImageX.FromFile(imgX, args[0]);

 // load image into ScanFix

 scanfix.FromHdib(image.ToHdib(true));

 // set up the Image Detergent options structure, so we can specify the colors

 // we wish to clean; in the test set, these colors are white, pink, blue,

 // and yellow

 Accusoft.ScanFixXpressSdk.ImageDetergentOptions idoptions =

 new Accusoft.ScanFixXpressSdk.ImageDetergentOptions();

 // add blue

 idoptions.ColorRadiusList.Add(new Accusoft.ScanFixXpressSdk.ColorRadius(

 System.Drawing.Color.FromArgb(0x00b0f0f8), 50, false));

 // add pink

 idoptions.ColorRadiusList.Add(new Accusoft.ScanFixXpressSdk.ColorRadius(

 System.Drawing.Color.FromArgb(0x00f8c8d8), 37, false));

 // add yellow

 idoptions.ColorRadiusList.Add(new Accusoft.ScanFixXpressSdk.ColorRadius(

 System.Drawing.Color.FromArgb(0x00f8f8c8), 25, false));

 // add white

 idoptions.ColorRadiusList.Add(new Accusoft.ScanFixXpressSdk.ColorRadius(

 System.Drawing.Color.FromArgb(0x00ffffff), 20, false));

 // clean the image with the given ImageDetergent settings

 scanfix.ImageDetergent(idoptions);

 // this gets access to the image in ScanFix, without giving up control

 image = Accusoft.ImagXpressSdk.ImageX.FromHdib(imgX,

 scanfix.ToHdib(false));

 // save the cleaned image so we can examine it

 image.Save(args[0] + "_cleaned");

 // set up simple thresholding

 Accusoft.ScanFixXpressSdk.BinarizeOptions binopts =

 new Accusoft.ScanFixXpressSdk.BinarizeOptions();

 binopts.HighThreshold = 255;

 binopts.LowThreshold = 128;

 // binarize the image

 scanfix.Binarize(binopts);

 // this gets access to the image in ScanFix, without giving up control

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 15 | P a g e

 image = Accusoft.ImagXpressSdk.ImageX.FromHdib(imgX,

 scanfix.ToHdib(false));

 // save the thresholded image so we can examine it

 image.Save(args[0] + "_thresholded");

 // set up OCR recognition zone to the full page, letter size at 150 dpi

 System.Drawing.Rectangle rect = new System.Drawing.Rectangle(0, 0,

(int)(8.5 * 150), 11 * 150);

 smartzone.Reader.Area = rect;

 // recognize the zone, and get the results

 PegasusImaging.WinForms.SmartZone2.TextBlockResult blockresult;

 blockresult = smartzone.Reader.AnalyzeField(scanfix.ToHdib(true));

 // save the output to a text file for analysis

 if (blockresult.NumberTextLines > 0)

 {

 // save the page text to a file

 System.Console.Out.WriteLine(blockresult.Text);

 System.IO.TextWriter outfile = new System.IO.StreamWriter(args[0]

+ ".txt");

 outfile.WriteLine(blockresult.Text);

 outfile.Close();

 }

 else

 {

 // note that no text was found for the given image

 System.Console.Out.WriteLine("No text was recognized");

 System.IO.TextWriter outfile = new System.IO.StreamWriter(args[0]

+ ".txt");

 outfile.WriteLine("No text recognized");

 outfile.Close();

 }

 }

 }

}

About the Author

Scot Alexander, Software Engineer, Accusoft Pegasus

Scot joined Accusoft Pegasus (Pegasus Imaging) with the acquisition of TMSSequoia in
December 2004. As an important member of the team since 1994, Scot has contributed
to several high performance document imaging product lines from Accusoft Pegasus,
including ScanFix Xpress, ScanFix Application, and Prizm Viewer. He began working on
color image processing in 1999, has a patent pending on a comb detection algorithm,
and is the inventor of the Virtual Bulb, Image Detergent, and Color Drop technologies
within ScanFix Xpress. In his spare time, he enjoys science fiction, Sluggy Freelance,
digital image processing, and algorithmic art. Scot earned a Bachelor of Science in
Computing and Information Science from Oklahoma State University.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 16 | P a g e

About Accusoft Pegasus

Founded in 1991 under the corporate name Pegasus Imaging, and headquartered in
Tampa, Florida, Accusoft Pegasus is the largest source for imaging software
development kits (SDKs) and image viewers. Imaging technology solutions include
barcode, compression, DICOM, editing, forms processing, OCR, PDF, scanning, video,
and viewing. Technology is delivered for Microsoft .NET, ActiveX, Silverlight, AJAX,
ASP.NET, Windows Workflow, and Java environments. Multiple 32-bit and 64-bit
platforms are supported, including Windows, Windows Mobile, Linux, Solaris x86,
Solaris SPARC, Mac OS X, and IBM AIX. Visit www.accusoft.com for more information.

http://www.accusoft.com/index.htm

