

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 1 | P a g e

Building a Multi-Page Image Viewer with
ImageGear for Silverlight

As the desire to deliver rich web content and functionality has increased over the last
decade, Rich Internet Application (RIA) technologies have become increasingly powerful.
Unfortunately, many of these technologies have been out of reach for many client
application developers because of the non-trivial learning curve involved. In addition, with
the number of RIA technologies available, where do you even begin? In many cases,
there was not a “one size fits all” solution, so RIA development would involve a mix of
HTML, JavaScript, Adobe Flash, and perhaps a little AJAX thrown in (just to name a few
possibilities). Luckily, Microsoft has entered the world of RIA frameworks, and with the
introduction of Microsoft Silverlight 2, offers a platform, which leverages existing .NET
developers’ talents. With version 3.0 in the works, providing enhanced graphics support,
data binding, and perhaps best of all, out-of-browser support, the Silverlight platform is
certainly worth a look for new, and even existing, RIA development.

Silverlight includes many of the same base services and types included in the .NET
Framework. However, because it is a runtime built specifically for the web, where
developers expect a robust platform in a small package, much of the functionality included
in its desktop cousin is absent. For example, the image type in Silverlight,
System.Windows.Media.Imaging.BitmapImage, only supports JPEG and PNG image
file types, and does not include support for grayscale. This is where third-party tools
vendors become part of the Silverlight ecosystem, providing extensions to the base
platform as the market demands. For the imaging domain, Accusoft Pegasus has
continued its reputation as the imaging tools leader, by providing one of the first imaging
toolkits for Silverlight developers – ImageGear for Silverlight.

This article will provide a quick tour of the ImageGear for Silverlight toolkit while
developing a multi-page image viewer, running completely on the client, via managed
code.

Building the Viewer

To get started, download the ImageGear for Silverlight SDK and sample code here. Open
Visual Studio 2008, and bring up the New Project dialog. Under the Visual C# heading,
select Silverlight as the project type, and then select Silverlight Application as the
project template. If you do not have Silverlight as an available project type, you need to
install the Silverlight 2 SDK, available from Microsoft. Finally, enter a name for your
project, and click OK (Figure 1).

http://www.accusoft.com/index.htm
http://www.accusoft.com/ig-silverlight.htm
http://www.accusoft.com/silverlight-whitepaper.htm

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 2 | P a g e

Figure 1: Defining the Silverlight Project

The next screen presented as you create the project deserves a bit of explanation,
particularly to those new to Silverlight development. The unit of deployment of a
Silverlight application is a XAP package, and deploys within an HTML web page, or as
part of an ASP.NET project. For many Silverlight applications, using an HTML web page
as your host would be perfectly fine. However, ImageGear for Silverlight utilizes a web
service to validate its SDK license, and the Silverlight application calling that web service
must run from the domain name that hosts the service. So, it is best to avoid the HTML
web page option, and instead create the ASP.NET project. The project wizards set
everything up for you anyway (Figure 2), so even the most inexperienced web developer
will be ok.

Figure 2: Selecting the Silverlight Host

And, with a click of the OK button, a solution is created, containing two projects – the
Silverlight application, where we will spend most of our time, and an ASP.NET host, set as
the startup project. If you compile and run at this point, the application will execute;

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 3 | P a g e

however, it will be pretty boring – just a blank page in IE. However, this page is not blank.
There is a full-fledged Silverlight application running within it. We just need to build its
layout to support our image viewer.

Defining the Layout

If you have utilized Windows Presentation Foundation (WPF) or Windows Workflow
Foundation (WF), you have likely become familiar with XAML. While XAML is nothing
more than a way to initialize a set of .NET types, it has become very popular in the next
generation GUI stacks provided by Microsoft, and that carries through to Silverlight. To
define the layout for our multi-page image viewer, we will modify the generated XAML to
specify a user interface more suitable than the blank surface we get by default. A
complete overview of XAML and the Silverlight GUI stack is beyond the scope of this
article, but we will briefly explain what we are doing along the way.

To help us get our bearings, Figure 3 below shows the default view and XAML generated
by Visual Studio. It defines a Silverlight UserControl, which contains an empty Grid.

 Figure 3: Generated Page.xaml

For our image viewer, we want to add a couple of controls to the UserControl – an
instance of the ImGearSilverlightPageView type for display of the image and several
buttons to support opening a file and navigating between its pages. But, before we modify
the XAML, we have some references to add to the project to ensure calls to ImageGear

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 4 | P a g e

for Silverlight resolve at compile time. ImageGear for Silverlight allows the developer to
deploy only those assemblies required for their specific application. This allows the
developer to keep the size of their deployment packages small, while enabling
background loading of non-essential assemblies. A complete listing and description of the
assemblies in ImageGear for Silverlight are in the toolkit’s documentation. For now, it is
enough to make sure your references list looks like that in Figure 4. You will find the
ImageGear for Silverlight assemblies in your \\Program Files\Accusoft\ImageGear for
Silverlight\Bin directory.

Figure 4: Required References

Finally, Listing 1 (below) shows the XAML for our image viewer’s layout. The XAML in
Listing 1 adds two rows in the original grid, one to hold the image viewer and a second to
hold the buttons. For the ImGearSilverlightPageView, it is placed directly in the cell
because it will simply fill its available space. The buttons, however, require some
additional layout containers to ensure the desired layout is created. This is done with a
second Grid containing two columns. The first will contain a Button we will use to invoke
an Open File operation. The second column will contain two buttons – Previous Page and
Next Page – so we will use a StackPanel container, and place two buttons within it. The
other primary point of interest in our XAML is the use of a Style resource for each of our
buttons. To make our XAML a bit cleaner and more efficient, the look for our buttons is
defined once, as a Style contained in the UserControl resources, and applied to each
button. There are many excellent resources on the Silverlight GUI elements and XAML,
and if you are not familiar with these technologies, I encourage you to look. You will never
want to drag and drop user controls again!

file:\\Program

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 5 | P a g e

Listing 1: Multi-Page Image Viewer XAML

<UserControl x:Class="MultiPageImageViewer.Page"

 xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"

 xmlns:x="http://schemas.microsoft.com/winfx/2006/xaml"

 xmlns:IGSilverlightUI="clr-namespace:ImageGear.Silverlight.UI;assembly=IGSilverlightUIV16sn"

 MinWidth="640" MinHeight="480">

 <UserControl.Resources>

 <Style x:Key="ButtonStyle" TargetType="Button">

 <Setter Property="Width" Value="100"/>

 <Setter Property="Margin" Value="8,4,8,4"/>

 </Style>

 </UserControl.Resources>

 <Grid x:Name="LayoutRoot" Background="White">

 <Grid.RowDefinitions>

 <RowDefinition Height="9*"/>

 <RowDefinition Height="*"/>

 </Grid.RowDefinitions>

 <!-- Primary Image Viewer -->

 <Grid Grid.Row="0" Background="Gray">

 <IGSilverlightUI:ImGearSilverlightPageView Margin="8"

 x:Name="mPageView" Background="Gray"/>

 </Grid>

 <!-- Button Row -->

 <Grid Grid.Row="1">

 <Grid.ColumnDefinitions>

 <ColumnDefinition Width="1*"/>

 <ColumnDefinition Width="2*"/>

 </Grid.ColumnDefinitions>

 <Button x:Name="mOpenButton" Grid.Column="0" Style="{StaticResource ButtonStyle}"

 Click="mOpenButton_Click" HorizontalAlignment="Left" IsEnabled="False">

 <TextBlock Text="Open File"/>

 </Button>

 <StackPanel Grid.Column="1" Orientation="Horizontal" HorizontalAlignment="Right">

 <Button x:Name="mPreviousButton" Style="{StaticResource ButtonStyle}"

 Click="mPreviousButton_Click" IsEnabled="False">

 <TextBlock Text="<< Previous"/>

 </Button>

 <Button x:Name="mNextButton" Style="{StaticResource ButtonStyle}"

 Click="mNextButton_Click" IsEnabled="False">

 <TextBlock Text="Next >>"/>

 </Button>

 </StackPanel>

 </Grid>

 </Grid>

</UserControl>

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 6 | P a g e

Now, it is difficult to visualize our image viewer using the XAML definition only. Luckily,
Visual Studio supports a split view so you can see the result of your XAML as you go.
Figure 5 below shows the layout generated by the XAML in Listing 1.

Figure 5: Multi-Page Image Viewer Layout

We have come a long way from the blank page, but now we need to write the code for our
application to run. If you compile and run right now, you will face all sorts of errors
(missing click handlers for one), so let’s take care of those, and get our image viewer
running!

The Code

We will start with the initialization code, contained in the Page constructor shown in Listing
2 below. ImageGear for Silverlight requires a license to run, and while you develop your
application with the SDK, it uses a web service for validation. 1 The
ImGearLicense.SetService call allows you to specify the location of this web service, and

1
 For more information on deployment licensing, please see the ImageGear for Silverlight documentation.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 7 | P a g e

it needs to be running from a URL on the same machine as the toolkit. Next, an
anonymous delegate is setup to run once the LicenseRequest event fires, more on this
soon. Finally, ImGearLicense.SetSolutionName is called, passing the evaluation
solution name as an argument.

The anonymous delegate that executes when the LicenseRequest event occurs is where
the remainder of the initialization occurs. The event is required because of the web
service involved; when the request for a license is made to the web service, the response
is not synchronous. As a result, we have to wait until the request is granted before
proceeding further. Within the delegate body, initialization of the PNG and Windows
(bitmap) codecs are performed, along with CCITT TIFF, TIFF, and JPEG. While the
toolkit requires the PNG and Windows formats to display images in the
ImGearSilverlightPageView, all others are optional. The developer gets to make the
choice.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 8 | P a g e

Listing 2: Page Constructor and ImageGear for Silverlight Initialization

public Page()

{

 InitializeComponent();

 // ImageGear for Silverlight Development licensing. This licensing

 // requires the sample to be run from a URL hosted on the same machine

 // ImageGear for Silverlight was installed on.

 string webServiceUrl = string.Format("http://{0}/{1}",

 App.Current.Host.Source.DnsSafeHost,

 "SilverlightWebService/SilverlightWebService.svc");

 ImGearLicense.SetService(webServiceUrl);

 ImGearLicense.LicenseRequest =

 new ImGearLicense.DelegateLicenseRequest(delegate(Exception error)

 {

 // Initialize format components

 // Required for ImGearSilverlightPageView

 ImGearFormatsPNGIFComponent.Initialize();

 ImGearFormatsWindowsComponent.Initialize();

 // Common formats

 ImGearFormatsCCITTComponent.Initialize();

 ImGearFormatsTIFFComponent.Initialize();

 ImGearFormatsJPEGComponent.Initialize();

 // ImageGear Initialized and Licensed; Enable the Open Button

 this.mOpenButton.IsEnabled = true;

 });

 ImGearLicense.SetSolutionName("AccuSoft 5-44-16");

}

Once the toolkit is initialized, we can write handlers for each of our buttons, and get some
images to display in the application. The mOpenButton handler (Listing 3) performs the
bulk of the work. Most of the code is stock, and will be familiar to anyone who has utilized
the OpenFileDialog type before. The Stream created is passed as an argument to
ImGearFileFormats.LoadDocument to be loaded. If a codec corresponding to the file
type is known to the toolkit (via initialization above), it will load; otherwise, an
ImGearException is thrown.

With the document loaded and an instance of the ImGearDocument in hand, an
ImGearPageDisplay instance is created to specify the viewable page to the
ImGearSilverlightPageView. The easiest way to link the concepts is to think of the
ImGearDocument as the in-memory representation of the file, and an
ImGearPageDisplay as the logical representation of the page for display. In other words,
the ImGearPageDisplay type contains the instructions for ImGearSilverlightPageView
to display the page properly. Examples might include resolution, clipping rectangles, or

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 9 | P a g e

transforms desired. Finally, to get the page to display, an ImGearPageDisplay is
assigned to the ImGearSilverlightPageView.Display property, and a call to
ImGearSilverlightPageView.Update made to force a redraw to occur.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 10 | P a g e

Listing 3: Open Button Handler

private ImGearDocument mLoadedDocument = null;

private Int32 mCurrentPage = -1;

private ImGearPageDisplay mCurrentPageDisplay = null;

 .

 .

 .

private void mOpenButton_Click(object sender, System.Windows.RoutedEventArgs e)

{

 // Prompt the user to select an image file

 OpenFileDialog ofd = new OpenFileDialog();

 ofd.Filter =

 "Image files (*.tif;*.jpg;*.png;*.bmp)|*.tif;*.jpg;*.png;*.bmp|All files (*.*)|*.*";

 ofd.FilterIndex = 1;

 bool? result = ofd.ShowDialog();

 if (!result.GetValueOrDefault(false))

 return;

 try

 {

 using (Stream f = ofd.File.OpenRead())

 {

 // Open it with ImageGear, showing the first page by default

 this.mLoadedDocument = ImGearFileFormats.LoadDocument(f, 0, -1);

 this.mCurrentPage = 0;

 if (null == this.mCurrentPageDisplay)

 {

 this.mCurrentPageDisplay =

 new ImGearPageDisplay(this.mLoadedDocument.Pages[this.mCurrentPage]);

 }

 else

 {

 this.mCurrentPageDisplay.Page =

 this.mLoadedDocument.Pages[this.mCurrentPage];

 }

 mPageView.Display = this.mCurrentPageDisplay;

 mPageView.Update();

 // Update the previous\next buttons depending on page count

 this.UpdateButtonStates();

 }

 }

 catch (ImGearException)

 {

 MessageBox.Show("The file selected is not supported by this sample.",

 "MultiPageTiffViewer Control", System.Windows.MessageBoxButton.OK);

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 11 | P a g e

 }

}

The remainder of the code manipulates the page displayed via the previous and next
buttons, modifying the page displayed by the ImGearSilverlightPageView type. The
Pages collection within the ImGearDocument allows you to select the page loaded in the
ImGearPageDisplay. Remember, when changing the page display, always call
ImGearSilverlightPageView.Update, or a redraw will not occur.

Listing 4: Previous and Next Button Handlers, UpdateButtonStates Method

private void mPreviousButton_Click(object sender, System.Windows.RoutedEventArgs e)

{

 if (this.mCurrentPage > 0)

 {

 this.mCurrentPageDisplay.Page = this.mLoadedDocument.Pages[--this.mCurrentPage];

 this.mPageView.Update();

 }

 // Update the previous\next buttons depending on page count

 this.UpdateButtonStates();

}

private void mNextButton_Click(object sender, System.Windows.RoutedEventArgs e)

{

 if (this.mCurrentPage < this.mLoadedDocument.Pages.Count - 1)

 {

 this.mCurrentPageDisplay.Page = this.mLoadedDocument.Pages[++this.mCurrentPage];

 this.mPageView.Update();

 }

 // Update the previous\next buttons depending on page count

 this.UpdateButtonStates();

}

private void UpdateButtonStates()

{

 this.mPreviousButton.IsEnabled =

 (this.mCurrentPage > 0 && mLoadedDocument.Pages.Count > 1) ? true : false;

 this.mNextButton.IsEnabled =

 ((this.mCurrentPage < (this.mLoadedDocument.Pages.Count - 1) &&

 mLoadedDocument.Pages.Count > 1)) ? true : false;

}

And, with that, we have our multi-page image viewer for Silverlight! Figure 6 below shows
the final product, with some “splash” applied by the web designer. With ImageGear for
Silverlight, we’ve been able to extend the base platform to support loading of TIFF files,
and we have a basic RIA suitable for document imaging display. Best of all, it was all

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 12 | P a g e

done with current .NET technologies like XAML and C#, using tools in the ecosystem. Of
course, a full featured viewer would do much more, and ImageGear for Silverlight will help
you get there.

Figure 6: Multi-Page Image Viewer

You can find Pegasus Imaging product downloads and features at www.accusoft.com.
Please contact us at sales@accusoft.com or support@accusoft.com for more information.

About The Author

Casey Muse, Program Manager
Since early 2007, Casey has been responsible for building Accusoft Pegasus’ Atlanta
engineering team. He also contributes to and supervises product design, implementation,
quality, and release for several products. In previous positions at Accusoft Pegasus,
Casey has contributed to software development, technology integration strategies,
development organizational structure, and product architecture. In addition, he has served
as a technical lead for Autodesk, working on DWF applications including Autodesk Design
Review. Casey earned a Masters in Business Administration with Honors from the
University of Tampa, and a Bachelor of Science in Information Systems (Magna Cum
Laude) from the University of South Florida.

www.accusoft.com

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 13 | P a g e

About Accusoft Pegasus

Founded in 1991 under the corporate name Pegasus Imaging, and headquartered in
Tampa, Florida, Accusoft Pegasus is the largest source for imaging software development
kits (SDKs) and image viewers. Imaging technology solutions include barcode,
compression, DICOM, editing, forms processing, OCR, PDF, scanning, video, and
viewing. Technology is delivered for Microsoft .NET, ActiveX, Silverlight, AJAX, ASP.NET,
Windows Workflow, and Java environments. Multiple 32-bit and 64-bit platforms are
supported, including Windows, Windows Mobile, Linux, Sun Solaris, Mac OSX, and IBM
AIX. Visit www.accusoft.com for more information.

http://www.accusoft.com/

