
Future-Proofing Your Legacy
IBM i Investments through
Application Mapping
By Stuart Milligan,
Databorough – A Division of Fresche Legacy

Future-Proofing Your IBM i
There is an emerging challenge facing
enterprises who have a continued
reliance on the IBM i.

As the number of active RPG programmers and administrators dwindles due to promotions,

retirement and attrition, companies will struggle to retain sufficient development resources to

maintain and develop their System i applications.

IT organizations will need to find a way to help new hires quickly and accurately grasp the

complexities and subtleties of these oftentimes vast systems, while providing them with the

confidence to make changes and extend these systems – even though they have no hands-on

development experience with the language or the platform.

In this edition of IBM i Insights, we will expand on this growing challenge in some detail, and

discuss technologies and concepts that are available to help IT organizations address the RPG

brain drain challenge and support continued development on the IBM i platform.

+

The Challenge

In an era of vanishing
resources, how do
corporations ensure the
viability of their IBM i
applications and help
new hires maintain aging
systems? By doing the
following:

Extracting critical
business rules

Understanding process
and flows

Uncovering compliancy
issues

Identifying obsolete and
duplicated code

Performing Impact
analyses.

+
FRESCHE
 Legacy

 IBM i
 Insights

2

System
Information

Information about the
system is key. Mission
critical applications
consist of a great many
physical files or tables,
and programs. The inter-
dependencies of
program-to-file and file-
to-program alone can
easily reach hundreds of
thousands.

A typical application on IBM i could be anything from a few thousand to many millions of lines of

code, with all of the complexity, design inconsistencies, languages, syntaxes and semantics that

go with years of ongoing development. Mission critical applications consist of a great many

physical files or tables, and programs. The inter-dependencies of program-to-file and file-to-

program alone can easily reach hundreds of thousands. These are not abstracted or esoteric

individual pieces of technology, but entire business systems, supporting critical business

functions.

As with any successful management system, information about the system is key. The level of

detail and availability of this information is another critical factor, which has already been proven

in business by the success of ERP and business systems in general. The requirement is not a new

one but is becoming more universal as systems continue to grow and mature. A key issue is how

to manage the cost and risk of maintaining and modernizing these systems, and continually

evolve to align with the needs of the business.

Application mapping – extracting and analyzing a comprehensive database of information about

your business application system – is a core solution to the problem.

Technical discussion: Making informed decisions through
application mapping

By mapping an entire application, a fundamental base line of information is made available for all

sorts of metrics and analysis. Counting objects and source lines is generally the most common

practice used for obtaining system-wide metrics. Many companies carry out software project

estimations and budgeting using only this type of information. The level of experience and

technical knowledge of a manager and his staff might help these numbers to some degree, but

more often than not, it’s mostly guesswork.

A slightly more advanced approach used with RPG, COBOL or Synon applications is to dig deeper

into the application and count design elements in the programs. These elements include:

 files

 displays

 sub-files

 source lines

 sub-routines

 called programs

 calling programs

By using a simple formula to allocate significance to the count of an element, programs can be

categorized by their respective counts into low, medium and high complexities. This type of

matrix-based assessment is still fairly crude, but adds enough detail to make estimations and

budgeting much more accurate without too much additional effort.

+

3

 A simple Design Complexity Metric displayed in a spreadsheet might look like the following:

Figure 1 - Simple Design Complexity Metric in a spreadsheet

Another common practice is to take small representative samples, conduct project estimations,

and then extrapolate this information in a simplistic linear way across the entire system or for an

entire project. This approach naturally relies upon the assumption that design, style, and syntax

for the entire application are consistent with the samples used. The reality is that samples are

most often selected based on functionality rather than complexity. However, sometimes the

opposite is true whereby the most complex example is selected on the basis of: “if it works for

that it’ll work for anything.”

Calculations that use comprehensive and accurate metrics data for an entire application, versus

data from a sample, will exponentially improve the reliability of time and cost estimation. Risk is

not entirely removed, but plans, estimates and budgets can be more accurately quantified,

audited, and even reused to measure performance of a project or process.

In the next section of this article, we’ll discuss application mapping in some detail. With an

application map, a number of very useful statistics and metrics can be calculated including

detailed testing requirements and a “maintainability index” for entire systems or parts thereof.

+

Application
Mapping

A variety of mapping
methods let you choose
the level of detail you
need to help you make
accurate estimations and
budgets. Calculations
that use comprehensive
and accurate metrics
data for an entire
application, such as those
available in X-Analysis,
will exponentially
improve the reliability of
time and cost estimation.

4

Building application maps

The cost of ownership of these large complex IBM i applications increases and maintenance

becomes more risky as application knowledge is lost and goes unreplaced.

Some information is available through native functionality, such as the DSP commands. Display

Program References (DSPPGMREF shown below in Figure 2) provides information about how a

program object relates to other objects in the system.

Figure 2 – DSPPGMREF screen output

This information is very useful in determining how a program relates to other objects. It is

possible to extract this information and store it in a file, and carry out searches on this file during

analysis work, as shown below.

Figure 3 - DSPPGMREF output to spreadsheet

+

Application
Knowledge

Maintaining application
knowledge is crucial in
reducing cost and risk.
Native platform
functionality provides a
certain amount of
information about your
applications, but detail is
limited and the work is
tedious for large systems.

5

+
A much more efficient way of showing the same information is to display it graphically using

X-Analysis. Additional information such as the directional flow of data can easily be included and

understood when added to diagrams. Systems design and architecture is best served using

diagrams. Color coding within these constructs is also important as it helps assimilate structure

and logically significant information more quickly. A good example of this is showing where

updates take place using the color red (see figure 4 below).

Figure 4 – Visualizing Program References in X-Analysis

Calculating Complexity

Halstead Volume
Halstead complexity metrics were developed by the late Maurice Halstead as a means of

determining a quantitative measure of complexity directly from the operators and operands

in the module to measure a program module's complexity directly from source code. Among

the earliest software metrics, they are strong indicators of code complexity.

Cyclomatic Complexity
Cyclomatic complexity is a software metric (measurement) developed by Thomas McCabe

and measures the amount of decision logic in a single software module. It is used for two

related purposes. First, it gives the number of recommended tests for software. Second, it is

used during all phases of the software lifecycle, beginning with design, to keep software

reliable, testable, and manageable.

Graphical
Display

Graphical display of
application structure
offered through
X-Analysis provides a
much richer
understanding of the
application and its
relation to the greater
system. X-Analysis
provides graphical
information such as the
following:

 Detailed data flow
diagrams

 Structure Chart
diagrams

 Application
overviews

 Impact analyses

 Business rules

 UML diagrams

 Metrics analysis

6

+
Embedding other important textual information such as object texts into diagrams is another way

of presenting information effectively and efficiently. In Figure 4 (above) we see how graphical and

textual information is combined to provide rich information about the program references with

arrows used to show the flow of data between the program and the other objects.

The data flow diagram concept confirms that the flow of data through a system is critical.

Application mapping information can be extended (Figure 5) to simultaneously include details

about individual variables associated with each of the referenced objects. The method used to

extract this level of precise variable detail is to scan the source code of the programs and

establish which entry parameters are used in the case of a program-to-program relationship.

In a program-to-file relationship, the job is somewhat more tedious, as you have to look for

instances where database fields and corresponding variables are used throughout the entire

program. It is also useful to see where individual variables are updated as opposed to being used

just as input. The diagram now presents a very rich set of information to the user in a simple and

intuitive way. The amount of work to extract and present this level of detail can quickly become

prohibitive, and so is better suited to X-Analysis’ tools-based approach rather than manual

extraction.

Figure 5 – Variables/Parameter Details

Detail

Graphical Application
mapping information can
be extended to
simultaneously include
details about individual
variables associated with
each of the referenced
objects. The automated
approach offered by
X-Analysis is a necessity
for this level of detail.

7

+
Figure 6 below shows a program-centric diagram in X-Analysis. The same diagram where the file is

the central object being referenced is also very useful in understanding and analyzing complex

applications. The same diagrammatic concepts can be used, such as color coding for updates,

arrows for data flow, and detailed variables simultaneously being displayed. By using the same

diagram types for different types of objects in this way, the same skills and methods can be

reused to twice the effectiveness. Figure 5 above shows how additional information such as

related logical files (displayed as database shapes) can be added and easily recognized by using

different shapes to depict different object types.

Figure 6 File-Centric Object References in X-Analysis

Functional organization of an application

Single level information about an RPG, SYNON or COBOL program is obviously not enough to

understand a business system’s design. You need to be able to follow the logical flow through the

application.

DSPPGMREF data can be used to do this. If we start at program A and see it calls program B, we

can then look at the DSPPGMREF information for program B and so on. Additionally we can

deduce precisely in this structure where and how data, print, and display files are being used in

the call stack, which is very useful for testing and finding bugs that produce erroneous data.

However, for large, complicated systems, this can be a slow and tedious process if done manually

using the display output of the DSPPGMREF. If you extract all programs’ DSPPGMREF information

out to a single file, you can recursively query this file to follow the calls down successive levels

starting at a given program. This can then show the entire call stack or structure chart for all

levels starting at a given program or entry point.

Application Flow

X-Analysis graphical
diagrams provide color
coding for updates,
arrows for data flow, and
detailed variables
displayed
simultaneously. Diagrams
help users (and especially
new developers) visualize
the application and
understand how the
system is organized.

8

+
But there’s a better way to do it. A given program’s call stack or call structure can be represented

much more effectively diagrammatically in X-Analysis than with any textual description alone.

Quite often these call stacks may go down as many as 15 levels from a single starting point.

It is therefore an important requirement to be able to display or hide details according to the

information required at the time, along with search facilities built into the diagrams.

Figure 7 – Diagram showing program call structure in X-Analysis

As with other diagrams, color coding plays an important role in classifying objects in the stack by

their general use, such as update, display, input only and so on.

Figure 7 above shows the structure of a program graphically. Additional information such as the

data files, displays and data areas used by each object can be added to enrich the provided

information.

However, this diagram alone does not give us the complete picture. For example, it doesn’t tell us

where we are in relation to the overall hierarchal structure of the application. We do not know if

the program is an entry point into the system, or is buried in the lower levels of the application.

The next page of this article describes how functional areas help the developer.

Call Stacks

Call stacks may go down
as many as 15 levels from
a given starting point.
Being able to display or
hide details becomes an
important function.
X-Analysis gives you full
control over how much
detail you need.

9

+
To better understand an entire system, objects need to be organized into functional groups or

areas. This can be achieved by using naming conventions, provided that they exist and that they

are consistent across the application. In addition, the entry points into the application need to be

established. Sometimes a user menu system is useful for this, but is not necessarily complete or

concise enough. One way to establish what programs are potential entry points is to determine

each program’s call index. If a program is not called anywhere, but does call other programs, it

can essentially be classed as an entry point into the system. If a program is called and in turn if it

calls other programs itself, it is not an entry point.

A functional area can be mapped by selecting an entry point (or a group of them) and then using

the underlying application map to include all objects (everything including programs, files,

displays) in the call stack. Figure 8 shows an X-Analysis diagram of a series of entry points and

their relative call stacks grouped as a functional area.

Figure 8 – Functional Application Area shown in X-Analysis

Functional Area

In X-Analysis, a functional
area can be mapped by
selecting an entry point
(or a group of them) and
then using the underlying
application map to
include all objects
(everything including
programs, files, displays)
in the call stack.

10

+
To more accurately describe an entire system’s architecture, functional application areas might

need to be grouped into other functional application areas. These hierarchal application areas

can then be diagrammed, showing how they interrelate with each other. This interrelation can be

hierarchal but also programmatic, because some objects might be found in more than one

application area simultaneously.

Figure 9 – High Level Functional Relationships in X-Analysis

Figure 9 shows how application areas interrelate. For the sake of clarity, only those programmatic

interrelations from entry level objects have been included, showing how the accounting Main

application area has other application areas embedded in it. The red lines show the programmatic

links between objects within the application. In this example, this level of interrelation has been

limited to programmatic links between entry point programs and programs they call in other

application areas. This is a very good way of mapping business functional areas to application

architecture in a simple diagram.

Logical subdivisions of an entire application are also employed in other areas of application

management. Some of these include:

 Clear and concise allocation of responsibility for maintenance/support of a set of objects.

 Integration with source code control/change management tools for check-in and check-out

processes during development.

 Production of user documentation for support, training and testing staff.

Database mapping
An IBM i business application is primarily an application written over a relational database.

Therefore, no map of an enterprise application would be complete without the database

architecture explicitly specified. Not just the physical specifications and attributes, but the logical

or relational constraints too.

11

+
With the possible exception of CA:2E systems, virtually all RPG or COBOL applications running on

IBM i have no explicit relational data model or schema defined. This means that millions of lines

of RPG or COBOL code must actually be read in order to recover an explicit version of the

relational model, searching for keys that constitute links or relationships between physical files or

tables in the database.

In database mapping, the first step is to produce a key-map of all the primary keys and fields for

all physical files, tables, logical files, access paths and views in the database. By using a simple

algorithm and looking at the DDS or DDL, one can often determine if foreign key relationships

exists between files. Figure 10 shows a diagram of this simple algorithm using the database

definitions themselves.

Figure 10 – Establishing foreign key relationships

A more advanced and comprehensive approach for determining foreign key relationships is to

analyze the program source code for the system. If we look at the source code of a program and

see that more than one file/table is used, there is a possibility that these files are related by

foreign key constraints. By finding instances in the program where one of the files is accessed for

any reason, and determining the keys used to do so, we can then trace these variables back

through the code to keys in another file in the program. If at least one of the key fields match in

attribute and size with the other file, and is part of the unique identifier of the file, then we have

a very strong likelihood that there is a relationship between these two files. By then looking at the

data using these key matches we can test for the truth of the relationship. By cycling through all

the files in the system one by one and testing for these matches with each and every other file,

we can establish all the relationships.

Database
Mapping

Mapping database
architecture is a critical
part of an application
mapping exercise. Since
most RPG and COBOL
applications running on
IBM i have no explicitly-
defined relational data
model, you need to read
millions of lines of code
to create one manually.
Alternatively, X-Analysis
creates a comprehensive,
centralized data
dictionary that
developers, managers
and analysts can use.

12

+
This task is complicated by the fact that the same field in different files will most often have a

different mnemonic name. So when analyzing the program source, we have to deal with data

structures, renames, prefixes and multiple variables. By having the program variable mapping

information at your fingertips beforehand, the analysis process will be a lot quicker. The majority

of this repetitive but structured analysis can be handled programmatically in X-Analysis, and thus

enable the task to be completed in a few hours rather than several months. Such automation

allows for keeping the relational model current at all times without a huge resource overhead.

Figure 11 – Mapping database file relationships in X-Analysis

Once explicitly defined, the relational model or architecture of the database can be reused in a

number of scenarios including:

 Understanding application architecture

 Data quality referential integrity testing

 Test data extraction

 Test data scrambling and aging

 Building BI applications & data warehouses

 Data mapping for system migrations

 Building object relational maps for modernization

Database-file
Relationships

X-Analysis builds a
graphic depiction of the
relational model,
handling the structured
analysis automatically so
that the task is
completed in a few hours
rather than a few
months. This automation
lets you keep the
relational model current
with little overhead.

13

+
Database access in all modern languages today is primarily driven by embedded SQL. IBM i legacy

databases are typified by transaction-based table design with many columns and foreign key

joins. This makes the task of writing SQL statements much more difficult and error prone unless

the design of the database is clearly understood. It also creates an environment where it is

relatively easy for inexperienced developers or users to write I/O routines or reports that have an

extremely negative performance impact. One way to combat this challenge is to provide detailed

design information about the database being accessed. Figure 11 shows a typical entity

relationship diagram in X-Analysis, and this can be accompanied with the underlying foreign keys

details as displayed in a spreadsheet in Figure 12.

Figure 12 – Foreign key details

Another more generic approach to ensuring integrity of the database, protecting the productivity

of modern technology developers, and limiting negative I/O performance impacts, is to build a

framework of I/O modules as stored procedures. The explicitly defined data model is a key

source of information, which will greatly simplify building of such a framework, and can even be

used to automate the generation of the framework itself.

It is also worth mentioning that products like IBM’s DB2 Web Query can become exponentially

more useful and productive if the meta-data layer is properly implemented. The derived data

model can be used to build this data instantly for the entire system.

SQL Statements

Database design must be
clearly understood to
write SQL statements on
the IBM i. The IBM i
legacy database is unlike
other databases. If you
try to apply normal
standards, you may have
problems. Performance
and scalability are the
obvious impacts but in
addition, there are
further inefficiencies with
debugging, and adding
infrastructure to
compensate. X-Analysis
provides detailed
database design
information and entity
relationships that help
developers avoid
common pitfalls.

14

+

Hard-coding application knowledge

As we’ve seen, the output of DSPPGMREF is a good starting point for the type of mapping

described so far, but it doesn’t go far enough.

From a design perspective, application software is made up of discrete layers or levels of detail. In

an IBM i application, for example, libraries contain programs, physical files, logical files, data

areas, commands and many more object types. Programs might contain file specs, variables, sub-

routines, procedures, display definitions, arrays and various other language constructs. Data files

have fields and text descriptions and keys and other attributes. Having an inventory of all these

elements is useful, but only in a very limited way from a management perspective. What is really

needed is context. For example, mapping the files and displays specified in a program helps IT

organizations understand the impact of change at an object level. This rudimentary mapping

provided by most program comprehension tools is limited in its usefulness as it still only provides

information at a single level.

Mapping all levels of detail and interrelationships with all other elements at all levels is the

ultimate objective. The only way to achieve this is to use an automated tool like X-Analysis to

read the source code line-by-line and infer all relationships implicit in each statement or

specification. The X-Analysis mapping process allows for variants of RPG, COBOL and CL going

back 20 years to be useful for the vast number of companies who have code written 20 years ago.

Relatively few humans have such knowledge or skill and could never keep up with the work load

required for even the most modest of IBM i applications. However, computer programs can be

“taught” such knowledge and retain it permanently. This hard coded application knowledge can

be reused as often as necessary to keep abreast of any code changes that take place.

Figure 13 – Pre-Building DSPPGMREF

Context

What is really needed is
context. For example,
mapping the files and
displays specified in a
program helps IT
organizations
understand the impact of
change at an object level.
Manual effort can only
take this labor-intensive
mapping so far.
X-Analysis can “learn”
your application
knowledge and make it
reusable throughout the
organization.

15

+
Pre-building the application map and storing it in an open and accessible format such as a

spreadsheet in Google Docs is also a useful tactic. Figure 13 above shows the filtered output of a

DSPPGMREF uploaded into a Google Docs spreadsheet. Having the map available provides for any

number of complex, system-wide abstractions or inquiries at acceptable speeds.

For a complete and accurate application map, one has to follow the trail of inferred references

described in the programs themselves. This is obviously a labor-intensive task made all the more

difficult by common coding practices such as:

 Overriding the database field name in a CL program

 Prefixing fields from a file being used in an RPG program

 Moving values from database fields into program variables before passing them as

parameters to called programs

 Changing key field names between different database files

 Passing the name of the program to be called as a parameter to a generic calling program

rather than making a direct call.

An application map pre-built with X-Analysis includes all of these inferred logical references, so

measurement of impact can be complete, and more importantly, instant. It also means that

higher-level analysis of rules and model type designs is made easier by virtue of the easy

availability of variable and object level mapping.

In summary
Using X-Analysis, application mapping provides a new way to manage and modernize complex

business applications. It is also a way to facilitate collaboration between modern and legacy

developers. It makes many new things possible every day. Application mapping provides a very

strong platform for a number of additional benefits and technologies that will continue to evolve

for many years.

In summary, application mapping with X-Analysis provides you with all of the following:

 Graphical documentation of your entire application eco-system, including detailed data flow,

structure chart and functional area diagrams

 Extracted relational data models for RPG/COBOL/SYNON applications

 Design, Quality and Complexity metrics

 UML diagrams

 Extracted business rules

 Powerful impact analysis

For more information about application mapping or X-Analysis, go to www.databorough.com, or

e-mail us: info@freschelegacy.com.

http://www.databorough.com/
mailto:info@freschelegacy.com

16

About Fresche Legacy

As a leading expert in legacy management and

modernization, Fresche Legacy helps enterprise

organizations transform their business to improve

financial performance, increase market

competitiveness, remove risk and add business value.

Our team of experts has successfully completed

hundreds of transformation projects within the most

complex enterprise environments, helping

organizations future-proof their business by

modernizing their business processes, technologies,

infrastructure, and methodologies. Committed to 100

percent customer satisfaction, Fresche Legacy’s

services and solutions span the complete legacy

modernization spectrum from concept to maintenance,

and include Discovery Services, Modernization

Solutions, and Application Management Services &

Transformation. For more information about our

company, visit us on the Web at

www.freschelegacy.com

Are you an enterprise organization seeking
solutions for your legacy environment?
Drop us a line at info@freschelegacy.com or
call us at 1-800-361-6782

mailto:info@freschelegacy.com

	Future-Proofing Your IBM i
	Technical discussion: Making informed decisions through application mapping
	Building application maps
	Functional organization of an application
	Database mapping
	Hard-coding application knowledge
	In summary

