

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 1 | P a g e

Fast Track Your Forms Processing
Application Development

Getting data from paper forms into your database used to require a huge software
development effort. Starting with the Accusoft Pegasus FormSuite SDK, however, you
can accurately collect information from paper forms within days rather than months.

Getting Started

The first step is to download the Accusoft Pegasus FormSuite SDK (including sample
code). The kit is available for both ActiveX and .NET development. We’ll use C#.NET to
show you how to quickly build a working forms processing application. The FormSuite
download includes several components that do all the heavy lifting in forms processing:

 ImagXpress
The basic image processing component to open and manipulate document
image files, including controls for displaying thumbnails and drawing zones on
images

 TwainPRO and ISIS Xpress
Two components included with ImagXpress that let you easily control almost any
scanner

 FormFix
Identifies which template matches a scanned form image, aligns that image to
the template, drops out the blank form, extracts zones for recognition, and
performs check-box recognition (OMR)

 ScanFix
Provides extensive image cleanup functions like deskew, despeckle, and others
to improve the quality of scanned images

 SmartZone OCR/ICR
Recognizes the machine printed or hand-printed text in the fields passed by
FormFix

 FormDirector
A traffic cop for easily passing data between the various forms processing
components above

 FormAssist
A sample application showing you how to put all of the above pieces (except for
the scanning part) together to build a complete, forms processing application

Our focus will be on the FormAssist application code, which is frequently used as the
starting point for developers who are building their own forms processing systems. A
tremendous amount of time can be saved by removing any unneeded features and

http://www.accusoft.com/forms-whitepaper.htm

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 2 | P a g e

adding your own batch processing features, rather than starting with an empty project.
The full source code for FormAssist is provided for exactly this purpose. All of the
components used by FormAssist are installed by the FormSuite SDK installation. The
entire application can be compiled and run with trial licensing—as long as it remains
unlicensed reminder screens will pop up as various components are accessed.

Once you’ve installed FormSuite, navigate from your Start button to: All Programs |
Pegasus Imaging | FormSuite | Samples | .NET | C# | FormAssist Demo. This link starts
Visual Studio with the FormAssist project already loaded. FormAssist demonstrates two
important but separate capabilities that your complete forms processing solution
requires. First, it allows you to build a set of form templates that will be used to identify
which form an incoming image matches, and how to process it. The image will
automatically be scaled and aligned to the matching template form, even if it’s upside-
down. For each template form, you can define precisely where each variable field of
data—or zone—is located, and how you want it to be processed.

The second part is the production process of running batches of scanned forms through
the matching, alignment, extraction, and recognition steps. The scanning step, where
you’ll create the form images from your physical documents using TwainPRO or ISIS
Xpress, and the actual delivery of the recognized data to your database, will not be
addressed here. Excellent samples for document scanning are provided with those two
components, and database access is highly specific to your particular needs.

Building a Form Template

So, let’s create a new Form Set and add our first form template into it. To compile and
run the project, all you need to do is Start Debugging (F5). After FormAssist starts, click
File | New Form Set:

Figure 1: Creating a new Form Set

Throughout this article, we’ll focus on the portions of the code that deal with forms
processing, to the exclusion of extensive user interface code, exception handling, and
other details that are part of the FormAssist sample. The important part of the code that
creates the new Form Set (found within FormAssist) is shown below.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 3 | P a g e

myFormSet = new FormDirector.FormSetFile(myFormDirector);

myFormSet.Name = "NewFormSet";

myFormSet.Filename = "NewFormSet.frs";

Note the use of FormDirector as the central repository and controller for all form and, as
we’ll see shortly, field information that will be needed during processing. FormDirector
uses a straightforward XML format, which is fully documented in the SDK, to record the
many settings that describe the entire forms processing procedure. This information is
used during processing to control all the functions and settings of all of the components
employed.

FormAssist will, of course, let you rename the Form Set, but we’ll leave it as the default,
since we only need one form set to demonstrate. For this example, I scanned a simple
blank W4 form into a TIFF file.

Figure 2: The W-4 Template Image

Unless you’ve been working for the same company for 20 years, you probably recall
filling out at least one of these. Generally, you’ll want to save forms in TIFF format, as a
bitonal Group 4 image, because it delivers lossless compression in a very small file size.
The following code provides an overview of the process of adding the form into the form
set.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 4 | P a g e

Listing 1: Adding a Form to a Form Set

 //always Deskew the template image prior to storage

 ScanFix.Enhancements enhancements;

 enhancements = new ScanFix.Enhancements();

 enhancements.Options.Add(new ScanFix.DeskewOptions());

 myScanFix.FromHdib(imageXView1.Image.ToHdib(false));

 myScanFix.ExecuteEnhancements(enhancements);

 //add the FileName as new Form in the Form Set

 string newfileName = nodeName + ".frd";

 FormDirector.FormDefinitionFile).Filename.ToUpper() ==

newfileName.ToUpper())

 FormDirector.FormDefinitionFile myFormDef = new

 FormDirector.FormDefinitionFile(myFormSet);

 FormDirector.TemplateImage myTemplateImage = new

 FormDirector.TemplateImage(myFormDirector);

 // We’ll store the original Image filename in OtherDataItems,

 // so we can show it later as a property

 FormDirector.DataItem myDataItem = new FormDirector.DataItem();

 myDataItem.Type = PicConst.OriginalImage;

 myDataItem.Content = formName;

 myFormDef.OtherDataItems.Clear();

 myFormDef.OtherDataItems.Add(myDataItem);

 //take name from node in the tree

 myFormDef.Name = nodeName;

 myFormDef.Filename = newfileName;

 // get the image from the ImagXpress view and save

 myTemplateImage.Hdib = imageXView1.Image.ToHdib(false);

 myFormDef.TemplateImages.Add(myTemplateImage);

 myFormSet.FormDefinitions.Add(myFormDef);

 dirtyFormSet = true; // remember this Form Set is not empty

Even though we require only one form in our example Form Set, that template will still be
used to align the incoming images, drop out the parts of the image that are part of the
blank form, and identify the zones of variable data that will be sent for recognition. Of
course, you could also have many different forms in your set, in which case the incoming
images would be compared to every one and matched with the best-fitting template, or
rejected.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 5 | P a g e

Defining Recognition Zones

There are three types of zones that we can define for recognition: OCR for machine-
printed text, ICR for hand-printed text, and OMR for mark recognition. A fourth zone type
called “clip” is provided for passing a chosen portion of the image to any outside
process. FormAssist includes a drag-and-drop user interface for drawing these zones on
your template form, and for defining in detail how each zone will be processed. The
processing can include ScanFix functions (such as deskew, despeckle, dilate, erode,
and character smoothing), Dropout parameters (including the dropout method and mis-
alignment settings), and details for how recognition is performed (character sets for
ICR/OCR, mark recognition thresholds for OMR, and many others).
First, we’ll select the OCR field button (on the left, containing ABC, below) and draw an
OCR field around the year on the form “2009”. FormAssist uses a light blue background
to quickly identify OCR fields on the form. And we’ll just click and drag a rectangle that
includes the full text with at least a few pixels around it to allow for registration variances.

Figure 3: Drawing an OCR Recognition Zone

I named this field “Year”. If we select the ScanFix tab at the bottom, we can see a wide
variety of available image cleanup functions that can be applied to this field. Each
function, such as the currently-highlighted Deskew function, has various parameters that
can be set individually for this field. I’ve chosen deskew and despeckle, moved them into
that order using the up/down arrows, and left the default settings for both.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 6 | P a g e

Figure 4: Applying ScanFix Cleanup to a Field

Now clicking the Dropout tab at the bottom, I am setting this to Clip rather than Dropout.
This will leave this area in the incoming forms instead of dropping it out, so that I can
OCR it and determine which year this W-4 form represents.

Figure 5: Setting Dropout method to Clip a Field

Next, I can click the OCR tab at the bottom and set up any specific parameters I might
need to optimize the recognition in that zone.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 7 | P a g e

Figure 6: Setting OCR Parameters for a Field

In this case, can limit my recognition character set to only those three characters I’m
expecting. Let’s say I know that I only want to process W-4 forms from 2007, 2008 and
2009. I can limit recognition to only the numbers 0, 2, 7, 8, and 9. This will give me the
highest possible confidence that anything found in that zone is actually one of these
characters. I can create a separate custom character set for every field, if I wish.

Figure 7: Selecting a Customer Character Set for a Field

Once we’ve selected the various types of processing to perform on our first OCR zone, it
can be stored into FormDirector.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 8 | P a g e

Listing 2: Adding a OCR Field to a Form

//Add a Form Field

 FormDirector.FormDefinition mycurrentFormDef;

 mycurrentFormDef = myFormSet.FormDefinitions[idxFormDef];

 FormDirector.Field myField = new FormDirector.Field();

 using (FormFix.DropOutProcessor dropProc = new

 FormFix.DropOutProcessor(myFormFix))

{

FormDirector.DataItem myDataItem = new FormDirector.DataItem();

//field type in OtherDataItem

 myDataItem.Type = PicConst.Type;

 //add Field Type XML

 myDataItem.Content = PicConst.OcrFieldType;

 myField.OtherDataItems.Add(myDataItem);

 //create the Dropout XML

 dropProc.DropOutMethod = FormFix.DropOutMethod.DropOut;

 dropProc.AllowableMisRegistration =

(int)numericUpDownOCRMisReg.Value;

 dropProc.PerformReconstruction = checkBoxOCRReconstruc.Checked;

 tmpDropString = dropProc.WriteToStream();

 //create & add the OCR XML

 mySmartZone.Reader.Classifier =

SmartZone.Classifier.MachinePrint;

 mySmartZone.Reader.MinimumCharacterConfidence =

 (int)numericUpDownOCRConf.Value;

//set the default rejection character

string s = textBoxRejection.Text;

 if (s == "")

 {

 s = "~";

 textBoxRejection.Text = s;

 }

mySmartZone.Reader.RejectionCharacter = s[0];

 //set all OCR recognition parameters from on-screen settings

mySmartZone.Reader.Area = new Rectangle(0,0,0,0);

 mySmartZone.Reader.CharacterSet =

SmartZone.CharacterSet.AllCharacters;

 mySmartZone.Reader.CharacterSet.Language =

 SmartZone.Language.WesternEuropean;

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 9 | P a g e

 mySmartZone.Reader.Segmentation.DetectSpaces =

 checkBoxOCRSpaces.Checked;

 mySmartZone.Reader.Segmentation.MaximumBlobSize =

 (int)numericUpDownOCRBlock.Value;

 mySmartZone.Reader.Segmentation.MinimumTextLineHeight =

 (int)numericUpDownOCRLine.Value;

 mySmartZone.Reader.Segmentation.MultipleTextLines =

 checkBoxOCRMultiple.Checked;

 mySmartZone.Reader.Segmentation.SplitMergedChars =

 checkBoxOCRMerged.Checked;

 mySmartZone.Reader.Segmentation.SplitOverlappingChars =

 checkBoxOCROverlap.Checked;

// add the OCR data item to FormDirector

 tmpOCRString = mySmartZone.WriteToStream();

 FormDirector.DataItem myOCRDataItem = new

FormDirector.DataItem();

 myOCRDataItem.Type = PicConst.RecognitionOp;

 myOCRDataItem.Content = tmpOCRString;

 myField.Operations.Add(myOCRDataItem);

 //add Dropout xml

 myField.Construction.Type = PicConst.DropoutOp;

 myField.Construction.Content = tmpDropString;

}

// add the name of the field (make it unique using a sequence

number)

 myField.Name = "Field " + nodeFieldSequenceNumber.ToString();

 fieldNode.Text = "Field " + nodeFieldSequenceNumber.ToString();

 // actually add the field to the form definition file

 mycurrentFormDef.Fields.Add(myField);

Now we’re ready to add our first employee information gathering field, an ICR zone that
will be used to collect the first name and middle initial of new employees who have
submitted Withholding Allowance forms. FormAssist uses an orange background to
quickly identify ICR fields on the form. We simply click the second ABC box and draw a
rectangle around the area that includes that data.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 10 | P a g e

Figure 8: Adding an ICR Field to a Form

Notice that the guide text “Type or print your first name and middle initial.” is fully
included in the zone! If this text were to be sent for ICR, it could cause lots of extraneous
results. This is where the magic of form dropout, as selected on the Dropout tab below,
comes into play. When chosen, anything that appears on the template form will be
removed before the field is sent for recognition. The Perform Reconstruction parameter
should always be set, to produce clean results after dropping out the template, leaving
only the variable data (the info our new employee printed on his blank form) remaining
from the input image.

Figure 9: Setting Form Dropout for Field Recognition

Since first names don’t normally include numbers, we can improve our results by
restricting our ICR character set for this field to “All Alphas,” as shown below. The other
common character sets are also shown in the pull-down list. As we showed previously,
the Custom setting is used to select any desired combination of characters for
recognition.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 11 | P a g e

Figure 10: Setting an ICR zone for “Alpha Only” recognition

The rest of the ICR fields are created in the same fashion. The SSN field, for example,
can only hold digits, and the Exempt field can only contain the letters E, X, M, P, and T.
The actual code to add this ICR field is very similar to the code to add the OCR field
above.

The last type of field we will enter is an OMR check-box. These are drawn and displayed
with light green rectangles in FormAssist. Again, you simply select the OMR drawing tool
(with the green check-mark), and draw the rectangle on the form.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 12 | P a g e

Figure 11: Setting Parameters for Mark (OMR) Recognition

We won’t go over all of the details, but here you have a great variety of options on how
marks can be defined for recognition, including mark thresholds and return values,
various bubble shapes, and the ability to describe arrays (rows and columns) of marks
as a single object. The OMR feature can also be used to detect the presence of a
signature, as required on this form. A snapshot of the relevant code to add the OMR field
follows.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 13 | P a g e

Listing 3: Adding an OMR Field to a Form

//Add an OMR Field

resetProperties(propType.OMR);

myDataItem.Content = PicConst.OmrFieldType;

 myField.OtherDataItems.Add(myDataItem);

 //create the Dropout XML

 dropProc.DropOutMethod = FormFix.DropOutMethod.Clip;

 dropProc.AllowableMisRegistration =

(int)numericUpDownOMRMisReg.Value;

 dropProc.PerformReconstruction = checkBoxOMRReconstruc.Checked;

 tmpDropString = dropProc.WriteToStream();

 //create & add the OMR XML

 using (FormFix.OmrProcessor omrProc = new

FormFix.OmrProcessor(myFormFix))

 {

 omrProc.Area = new Rectangle(0,0,0,0);

 omrProc.AnalysisComparisonMethod =

FormFix.OmrAnalysisComparisonMethod.None;

 omrProc.MultiSegmentReadDirection =

 FormFix.OmrMultiSegmentReadDirection.Normal;

 omrProc.MarkedBubbleThreshold =

(int)numericUpDownOMRMBubble.Value;

 omrProc.UnmarkedBubbleThreshold =

(int)numericUpDownOMRUBubble.Value;

 omrProc.UnmarkedSegmentResult = textBoxOMRUSegment.Text;

 omrProc.MarkScheme = FormFix.OmrMarkScheme.SingleMark;

 omrProc.MultiMarkDelimiter = textBoxOMRDelim.Text;

 omrProc.BubbleShape = FormFix.OmrBubbleShape.Circle;

 omrProc.Orientation =

FormFix.OmrOrientation.HorizontalSegments;

 tmpOMRString = omrProc.WriteToStream();

 FormDirector.DataItem myOMRDataItem = new

FormDirector.DataItem();

 myOMRDataItem.Type = PicConst.OmrOp;

 myOMRDataItem.Content = tmpOMRString;

 myField.Operations.Add(myOMRDataItem);

 }

// add the name of the field (make it unique using a sequence

number)

 myField.Name = "Field " + nodeFieldSequenceNumber.ToString();

 fieldNode.Text = "Field " + nodeFieldSequenceNumber.ToString();

 // actually add the field to the form definition file

 mycurrentFormDef.Fields.Add(myField);

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 14 | P a g e

The rest of the fields on this form are essentially the same as the sample OCR, ICR and
OMR fields we have just defined. Without showing the code to obtain the name for your
Form Set file from a dialog box, the following is the heart of the code to save your
completed forms (or just one form, in our case) to a Form Set file.

Listing 4: Saving the Form Set

//Save the current Form Set

int myFormCount = myFormSet.FormDefinitions.Count;

 for (int i=0; i<myFormCount; i++)

 {

 FormDirector.FormDefinitionFile myFormDef =

 (myFormSet.FormDefinitions[i] as

FormDirector.FormDefinitionFile);

 }

Processing Live Forms

Although the processing of actual forms is often done with a separate application, the
FormAssist demo lets you manually try out some of your live images, so that you can
confirm that everything’s set up correctly and you can fine-tune parameters to optimize
your results. This processing code within the demo can be used to create your own
production system, which might also include subsystems for document scanning, or for
manual review of low-confidence data fields by operators. Since the exact location of
each suspect field is known, it’s quite easy to build a Key From Image (KFI) user
interface that zooms in on the correct part of the image, and allows the operator to type
any corrections before the data is stored in a permanent database.

FormAssist includes a lot of reusable code that you can use to build a production-level
processor to cycle each input image through the form matching, dropout, cleanup and
recognition actions stored by FormDirector as XML streams. The following code
snippets are intended to demonstrate how many of the individual operations might be
implemented within your code, rather than showing the full solution.

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 15 | P a g e

Listing 5: Processing Forms – Image Cleanup

// Method to process a filled image, first performing image

identification and

// alignment, then processing each field on the form if a match was

found

public void ProcessImage(System.Drawing.Image inputImage)

// Set the image into a form image

filledImage =

FormFix.FormImage.FromBitmap((System.Drawing.Bitmap)inputImage, FF);

filledImage.HorizontalResolution = inputImage.HorizontalResolution;

filledImage.VerticalResolution = inputImage.VerticalResolution;

imageToProcess = filledImage;

// Do the full-page ScanFix enhancements (rather than field cleanup)
ScanFix.Enhancements enhancements;

enhancements = new ScanFix.Enhancements();

// get the XML list of cleanups from FormDirector

enhancements.ReadFromStream(enhancementXML, SF);

// Set the image to be enhanced into ScanFix, then enhance

SF.FromHdib(frmImage.ToHdib(false));

SF.ExecuteEnhancements(enhancements);

// Set the results back into the form image

return FormFix.FormImage.FromHdib(SF.ToHdib(true), true, FF);

Listing 6: Processing Forms – Form Identification, and Alignment

// Set up the form identification processor

idProcessor = new FormFix.IdentificationProcessor(FF);

// set up the event handlers for processing the form

idProcessor.ReadChecksum += new

 FormFix.ReadChecksumEventHandler(formIdReadChecksum);

idProcessor.ReadDataItem += new

FormFix.DataItemEventHandler(formIdReadDataItem);

idProcessor.WriteDataItem += new

FormFix.DataItemEventHandler(formIdWriteDataItem);

// get the FormSet setting for FormFix for identifying a form

idProcessor.ReadFromStream(FS.Identification.Content);

idProcessor.MaximumIdentificationBestMatches = maximumBestMatches;

// Add the form models to the identifier

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 16 | P a g e

for (int i = 0; i < FS.FormDefinitions.Count; i++)

{

 formModel = new FormFix.FormModel(FF);

 formModel.Tag = FS.FormDefinitions[i];

 formModel.Name = FS.FormDefinitions[i].Name;

 formModel.ReadDataItem += new

 FormFix.DataItemEventHandler(formModelReadDataItem);

 formModel.ReadFormImage += new

 FormFix.ReadFormImageEventHandler(formModelReadFormImage);

 formModel.ReadChecksum += new

 FormFix.ReadChecksumEventHandler(formModelReadChecksum);

 formModel.WriteDataItem += new

 FormFix.DataItemEventHandler(formModelWriteDataItem);

 idProcessor.FormModels.Add(formModel);

}

// Identify the unknown image

idResult = idProcessor.Identify(unknownImage);

if (idResult.State != FormFix.IdentificationState.NoMatchFound)

{

 // Match found, align the image

 alignedImage = idResult.RegistrationResult.AlignImage(unknownImage);

 // After alignment, process each field

 // All fields are described in the formDef

 formDef = (FormDirector.FormDefinitionFile) idResult.FormModel.Tag;

 for (int i = 0; i < formDef.Fields.Count; i++)

 { //processes each field according to formDef instructions

 ProcessField(formDef.Fields[i], imageToProcess);

 }

Listing 7: Processing Forms – Field Dropout
 //for each field, Drop out the form if requested

 if (field.Construction.Type == PicConst.DropoutOp)

 //create a dropout processor to remove the form from the background

 dropOutProcessor = new FormFix.DropOutProcessor(FF);

 dropOutProcessor.ReadFromStream(field.Construction.Content);

 dropOutProcessor.Area = field.Location;

// Dropout processor is executed against the enhanced or original

filled image

if (enhancedImage != null)

 dropOutResult = dropOutProcessor.CreateImageOfField(enhancedImage,

 idResult.RegistrationResult);

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 17 | P a g e

else

 dropOutResult = dropOutProcessor.CreateImageOfField(filledImage,

 idResult.RegistrationResult);

Listing 8: Processing Forms – Field Cleanup and Recognition

// Next clean up the individual field

ScanFix.Enhancements enhancements;

enhancements = new ScanFix.Enhancements();

 enhancements.ReadFromStream(field.Operations[idxOp].Content, SF);

SF.FromHdib(imageToProcess.ToHdib(false));

SF.ExecuteEnhancements(enhancements);

imageToProcess = FormFix.FormImage.FromHdib(SF.ToHdib(true), true, FF);

thisFieldResult.EnhancedImage = imageToProcess;

// If OMR field, do mark recognition
idxOp = field.Operations.GetIndexOfType(PicConst.OmrOp);

if (idxOp >= 0)

if (omrProcessor == null)

omrProcessor = new FormFix.OmrProcessor(FF);

// get the OMR settings from the form definition file for this field

omrProcessor.ReadFromStream(field.Operations[idxOp].Content);

// Depending on the OMR settings from choose the type of comparison

switch (omrProcessor.AnalysisComparisonMethod)

{

 case FormFix.OmrAnalysisComparisonMethod.None:

 // Use the image clip

 omrProcessor.Area = new System.Drawing.Rectangle(0,0,0,0);

 imageToOmr = imageToProcess;

 break;

 case FormFix.OmrAnalysisComparisonMethod.CompareClipToFormModel:

 // Use the image clip

 omrProcessor.OriginOfClip = new System.Drawing.Point

 (field.Location.X, field.Location.Y);

 omrProcessor.Area = new System.Drawing.Rectangle(0,0,0,0);

 imageToOmr = imageToProcess;

 omrProcessor.FormModel = idResult.FormModel;

 break;

 case

FormFix.OmrAnalysisComparisonMethod.CompareFullImageToFormModel:

 // Use the aligned image, since we are comparing to the form image

 omrProcessor.Area = field.Location;

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 18 | P a g e

 imageToOmr = alignedImage;

 omrProcessor.FormModel = idResult.FormModel;

 break;

 }

 // Perform the OMR

 thisFieldResult.OmrResult = omrProcessor.AnalyzeField(imageToOmr);

 // Perform OCR for the Field (similar for ICR)

 idxOp = field.Operations.GetIndexOfType(PicConst.RecognitionOp);

 if (idxOp >= 0)

 {

 SZ.ReadFromStream(field.Operations[idxOp].Content);

 thisFieldResult.OcrResult =

 SZ.Reader.AnalyzeField(imageToProcess.ToHdib(false));

 }

If you click on the Aligned Image thumbnail, you can see exactly how dropout performed.
Only the items shown in red still remain after the template form was dropped from the
scanned image. This contains the variable data that is recognized to eventually populate
your database.

Figure 12: Aligned Image, Showing Variable Data in Red

If you click on the Field Results tab, you can see the actual cleaned image clips for each
zone. Note how the guide text (Your social security number) has been completely
removed, resulting in accurate recognition:

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 19 | P a g e

Figure 13: Field Results, Showing Clipped and Cleaned Zone

Conclusion

The sample code in FormAssist serves two important purposes for any developer
wishing to build an application to extract data from structured forms. First, it can be used
to create form templates defining recognition zones for each type of form you’ll use in
your document workflow. Second, it serves as the starting point for your own form
definition application and your custom batch form processing solution. As previously
mentioned, the code shown here represents some of the key steps involved. The entire
sample, and all referenced components, can be downloaded here: Download Accusoft
Pegasus FormSuite SDK

You can find Accusoft Pegasus product downloads and features at www.accusoft.com.
Please contact us at sales@accusoft.com or support@accusoft.com for more
information.

About Accusoft Pegasus

Founded in 1991 under the corporate name Pegasus Imaging, and headquartered in
Tampa, Florida, Accusoft Pegasus is the largest source for imaging software
development kits (SDKs) and image viewers. Imaging technology solutions include
barcode, compression, DICOM, editing, forms processing, OCR, PDF, scanning, video,
and viewing. Technology is delivered for Microsoft .NET, ActiveX, Silverlight, AJAX,
ASP.NET, Windows Workflow, and Java environments. Multiple 32-bit and 64-bit
platforms are supported, including Windows, Windows Mobile, Linux, Sun Solaris, Mac
OSX, and IBM AIX. Visit http://www.accusoft.comfor more information.

http://www.accusoft.com/forms-whitepaper.htm
http://www.accusoft.com/forms-whitepaper.htm
http://www.accusoft.com/
mailto:sales@accusoft.com
mailto:support@accusoft.com
http://www.accusoft.com/

© 2009 Pegasus Imaging Corporation, DBA Accusoft Pegasus 20 | P a g e

About the Author

Paul B. Firth, Product Manager
Paul has been helping to guide the overall product strategy for Accusoft Pegasus since
2005. In this role he works closely with the Sales and R&D teams to identify and satisfy
product needs in the highly-dynamic software tools market. Prior to joining Accusoft
Pegasus, he has led high-tech marketing teams and managed teams of both software
and hardware developers. Paul holds a Masters in Business Administration from New
York University, and Bachelor of Science degree in Electrical Engineering from the
University of Rochester.

http://www.codeproject.com/Members/Paul-Firth

