

LABORATORY FOR HUMAN NEUROSCIENCE

Introduction

- Rhythmic activity of the hippocampus and hippocampal-cortical network in the theta-frequency band (~3-8Hz) is thought to support episodic memory.¹
- The phase of the hippocampal theta oscillation may orchestrate the transition between hippocampal connectivity states supporting memory formation vs. retrieval^{2,3}, but this has not been conclusively demonstrated in humans.
- Noninvasive transcranial magnetic stimulation (TMS) can produce phase-entrainment in a targeted brain region when delivered at a rhythm endogenously produced by that region⁴.
- To investigate the theta phase dependence of memory processing in humans, we delivered theta-frequency stimulation to the hippocampalcortical network to produce phase-entrainment, then measured performance on a specialized memory task timed relative to the entraining stimulation.

Methods

- We applied theta-burst TMS in an attempt to manipulate hippocampal theta phase via entrainment.
- Subjects received 5Hz theta-burst stimulation of a cortical location in the hippocampal network, as in other recent work from our laboratory^{5,6}.
- Target location was identified from resting-state fMRI for each subject based on hippocampal connectivity, restricted to left parietal (angular gyrus, inferior parietal lobule), TMS-accessible sites.
- To control for sensory entrainment effects of TMS, we also performed trials where we delivered the same stimulation to a vertex control site.
- Following each 2s TMS train, subjects performed a memory encoding task where a brief (<17ms) visual stimulus was shown at a known latency relative to the last TMS burst.
- Encoding success was determined based on performance on a subsequent test of associative recall.

- Subjects performed blocks of TMS-entrained stimulus encoding (9) trials/block), distractor task, and memory testing with simultaneous EEG recording. Each block was randomly assigned to targeted or vertex control stimulation. (24 total blocks)
- \circ Stimuli were presented at one of 6 phases, corresponding to $\pi/2$ intervals along the entrained theta oscillation.
- Performance on the memory test is compared across entrained theta phase values. If we successfully entrained hippocampal theta and if there is a phase dependence of encoding success, **memory** performance vary periodically with entrained theta phase.

Oscillatory Mechanisms for Hippocampal Memory Encoding Tested in Humans

Northwestern University Feinberg School of Medicine, Department of Medical Social Sciences and Interdepartmental Neuroscience Program

Research aims

Aim 1: Investigate the relationship between exogenously entrained hippocampal theta phase and memory encoding ability. Aim 2: Identify neural correlates of optimal encoding due to theta phase synchrony with memoranda.

Results

visual stimulus

- memoranda presentation relative to
- encoding ability during the rising
- following stimulation: p=0.007, robust after multiple comparisons.. Second

The goal of this analysis was to **determine how extrapolated** stimulatory phase angle at the time of memoranda onset influenced memory processing.

Calculating ERP correlates of successful encoding

NORTHWESTERN UNIVERSITY

Targeted stimulation results in enhanced encoding signal positivity across frontal and central electrodes. (n=12)

Encoding signal ERPs by stimulation condition, by extrapolated phase

- related theta signals and support the role of theta phase in encoding.

- Siegle, J. H., & Wilson, M. A. (2014). Enhancement of encoding and retrieval functions through theta phase-specific manipulation of hippocampus. ELife, 3, e03061.
- https://doi.org/10.7554/eLife.0306 1. Thut, G., Veniero, D., Romei, V., Miniussi, C., Schyns, P., & Gross, J. (2011). Rhythmic TMS Causes Local Entrainment of Natural Oscillatory Signatures. Current Biology, 21(14), tps://doi.org/10.1016/j.cub.2011.05.04 5. Wang, J. X., Rogers, L. M., Gross, E. Z., Ryals, A. J., Dokucu, M. E., Brandstatt, K. L., Hermiller, M. S., & Voss, J. L. (2014). Targeted enhancement of cortical-hippocampal brain networks and associative memory. Science, 345(6200), 1054–1057. https://doi.org/10.1126/science.125290
- Hermiller, M. S., Karp, E., Nilakantan, A. S., & Voss, J. L. (2019). Episodic memory improvements due to noninvasive stimulation targeting the cortical-hippocampal network: A replication and extension experiment. Brain and Behavior, 9(12), e01393. https://doi.org/10.1002/brb3.1393