
Not all “complex” stimulus sets are 
diagnostic of  perirhinal function

Perceptual-Mnemonic Account:  
PRC enables object-level representations not supported by more posterior 

regions of  the VVS (Bussey & Saksida 2002) 

Mnemonic Account:  
PRC-related deficits due to either (i) Damage in adjacent sensory cortex, e.g. 

inferior temporal (IT) cortex or (ii) Memory-related task demands (Suzuki 2009)

Competing accounts of  PRC-related deficits on perceptual tasks: 

BACKGROUND COMPUTATIONAL META-ANALYSIS

NON-DIAGNOSTIC

Does this computational proxy for the VVS reflect the behavior of  PRC-lesioned subjects?

MODEL-BASED EXPERIMENTAL DESIGN

(i) Collect published experiments (ii) model stimuli with VVS proxy (iii) relate model-human behavior

DIAGNOSTIC

Convolutional Neural Networks predict neural responses throughout the VVS  
(e.g. V1: Cadena et al. 2019|V4: Bashivan et al. 2019|IT: Yamins et al. 2014) 

- PRC-lesioned behavior is well approximated by computational model of  the VVS  

- PRC-intact behaviors (MTL-intact & HPC lesions) diverge from model performance 

- Results suggest PRC implicated in concurrent visual discrimination (‘oddity’) tasks 

- Available stimuli don’t enable claims about VVS-dependence in PRC-lesioned state 

- Leveraged model to develop experiment that exhibits ideal stimulus properties  

- Neurotypical divergence from IT-supported accuracy covaries with reaction time 

- Differential  layer by layer fit to IT correlates with differential fit to PRC-lesioned behavior 
- However, this differential fit to PRC-lesioned behavior is significant across all layers  
- We could expect similar results regardless where PRC-lesioned behavior was reliant on 

Can we make focal anatomical claims about where in the VVS PRC-lesioned behavior is reliant on? 

Perirhinal cortex (PRC) is a MTL structure situated at 
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Fig. 1. (a) Lateral and (b) medial views of macaque cerebral cortex. The lateral view shows the ventral visual stream object processing pathway (shaded) and some of the
anatomical connections between cortical areas (arrows). The medial view shows structures within the putative medial temporal lobe memory system including the perirhinal
cortex and hippocampus. Abbreviations: ls, lateral sulcus; sts, superior temporal sulcus; V1–V4, TEO, and TE, visual cortical areas. Figure adapted from Murray et al. (2007).

of an MTL memory system, but instead as an extension of the ventral
visual stream (Fig. 1).

The VVS is thought to contain hierarchically organized repre-
sentations of visual stimuli (Desimone & Ungerleider, 1989). This
idea receives much support from electrophysiological and anatom-
ical studies providing evidence that in general, neurons respond to
increasingly complex stimuli as you move downstream in the VVS
(Tanaka, 1996), and has been referred to by Riesenhuber and Poggio
(1999) as the “Standard Model” of object processing in the cortex.
According to this view, when an object is presented to and encoded
by a subject, it is represented not in a particular ‘object’ module,
but throughout the entire pathway. Yet the object is represented in
different ways in different parts of the pathway: as features in pos-
terior regions, as conjunctions of features in more anterior regions,
and as complex feature conjunctions—perhaps at the level of object
wholes—in anterior regions such as perirhinal cortex (see Fig. 2).

We built a basic computational model to explore whether the
location of perirhinal cortex anteriorly within the VVS, and there-
fore the high-level object representations that it maintains, might
be sufficient to explain the effects of lesions in perirhinal cortex on
a variety cognitive tests (see Fig. 3). In other words, how much can
we understand about the processes that we label memory and per-
ception, etc. simply by considering the hierarchical nature of visual
representation in the brain, without postulating separate memory
systems or processes? For simplicity, the model collapses the VVS

Fig. 2. The proposed organization of visual representations in the ventral visual
stream object processing pathway. A, B, C and D refer to relatively simple features
represented in caudal regions. More complex conjunctions of these features are
stored in more rostral regions, including perirhinal cortex. Figure adapted from
Bussey and Saksida (2002).

to two layers: a “feature” layer (corresponding to regions posterior
to perirhinal cortex) which contains representations of simple fea-
tures of objects, and a “feature conjunction” layer (corresponding to
perirhinal cortex) which contains representations of complex con-
junctions of these visual features (Bussey & Saksida, 2002; Bussey,
Saksida, & Murray, 2005; Cowell et al., 2006).

The initial test of the model involved damaging the component
of the model corresponding to perirhinal cortex, and running simu-
lations of the several findings related to object identification in the
literature at the time. These findings include the report by Buckley
and Gaffan (1997) that monkeys with perirhinal cortex lesions were
impaired when learning a large, but not a small number of concur-
rent pair-wise visual discriminations, and the subsequent finding
that monkeys with perirhinal cortex lesions were impaired on a
configural concurrent discrimination learning task (in which dis-
criminanda explicitly shared features), even when the stimulus set
size was small (Buckley & Gaffan, 1998); these studies are discussed
in more detail below). The model was able successfully to account
for these data, and the fundamental reason for the impairment in
lesioned networks was the same in all cases: Networks with a dam-
aged perirhinal cortex component did not have the representations
necessary to cope with problems in which the individual features
alone did not provide a reliable solution. We refer to this situa-

Fig. 3. Diagram of the connectionist model of Cowell et al. (2006). The network con-
sists of two layers of units, a feature layer and a feature conjunction layer, and an
outcome node representing a consequent event such as reward. The feature con-
junction layer represents perirhinal cortex and the feature layer represents regions
caudal to perirhinal cortex in the ventral visual stream. Figure adapted from Cowell
et al. (2006).
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anatomical connections between cortical areas (arrows). The medial view shows structures within the putative medial temporal lobe memory system including the perirhinal
cortex and hippocampus. Abbreviations: ls, lateral sulcus; sts, superior temporal sulcus; V1–V4, TEO, and TE, visual cortical areas. Figure adapted from Murray et al. (2007).

of an MTL memory system, but instead as an extension of the ventral
visual stream (Fig. 1).

The VVS is thought to contain hierarchically organized repre-
sentations of visual stimuli (Desimone & Ungerleider, 1989). This
idea receives much support from electrophysiological and anatom-
ical studies providing evidence that in general, neurons respond to
increasingly complex stimuli as you move downstream in the VVS
(Tanaka, 1996), and has been referred to by Riesenhuber and Poggio
(1999) as the “Standard Model” of object processing in the cortex.
According to this view, when an object is presented to and encoded
by a subject, it is represented not in a particular ‘object’ module,
but throughout the entire pathway. Yet the object is represented in
different ways in different parts of the pathway: as features in pos-
terior regions, as conjunctions of features in more anterior regions,
and as complex feature conjunctions—perhaps at the level of object
wholes—in anterior regions such as perirhinal cortex (see Fig. 2).

We built a basic computational model to explore whether the
location of perirhinal cortex anteriorly within the VVS, and there-
fore the high-level object representations that it maintains, might
be sufficient to explain the effects of lesions in perirhinal cortex on
a variety cognitive tests (see Fig. 3). In other words, how much can
we understand about the processes that we label memory and per-
ception, etc. simply by considering the hierarchical nature of visual
representation in the brain, without postulating separate memory
systems or processes? For simplicity, the model collapses the VVS

Fig. 2. The proposed organization of visual representations in the ventral visual
stream object processing pathway. A, B, C and D refer to relatively simple features
represented in caudal regions. More complex conjunctions of these features are
stored in more rostral regions, including perirhinal cortex. Figure adapted from
Bussey and Saksida (2002).

to two layers: a “feature” layer (corresponding to regions posterior
to perirhinal cortex) which contains representations of simple fea-
tures of objects, and a “feature conjunction” layer (corresponding to
perirhinal cortex) which contains representations of complex con-
junctions of these visual features (Bussey & Saksida, 2002; Bussey,
Saksida, & Murray, 2005; Cowell et al., 2006).

The initial test of the model involved damaging the component
of the model corresponding to perirhinal cortex, and running simu-
lations of the several findings related to object identification in the
literature at the time. These findings include the report by Buckley
and Gaffan (1997) that monkeys with perirhinal cortex lesions were
impaired when learning a large, but not a small number of concur-
rent pair-wise visual discriminations, and the subsequent finding
that monkeys with perirhinal cortex lesions were impaired on a
configural concurrent discrimination learning task (in which dis-
criminanda explicitly shared features), even when the stimulus set
size was small (Buckley & Gaffan, 1998); these studies are discussed
in more detail below). The model was able successfully to account
for these data, and the fundamental reason for the impairment in
lesioned networks was the same in all cases: Networks with a dam-
aged perirhinal cortex component did not have the representations
necessary to cope with problems in which the individual features
alone did not provide a reliable solution. We refer to this situa-

Fig. 3. Diagram of the connectionist model of Cowell et al. (2006). The network con-
sists of two layers of units, a feature layer and a feature conjunction layer, and an
outcome node representing a consequent event such as reward. The feature con-
junction layer represents perirhinal cortex and the feature layer represents regions
caudal to perirhinal cortex in the ventral visual stream. Figure adapted from Cowell
et al. (2006).
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Fig. 1. (a) Lateral and (b) medial views of macaque cerebral cortex. The lateral view shows the ventral visual stream object processing pathway (shaded) and some of the
anatomical connections between cortical areas (arrows). The medial view shows structures within the putative medial temporal lobe memory system including the perirhinal
cortex and hippocampus. Abbreviations: ls, lateral sulcus; sts, superior temporal sulcus; V1–V4, TEO, and TE, visual cortical areas. Figure adapted from Murray et al. (2007).

of an MTL memory system, but instead as an extension of the ventral
visual stream (Fig. 1).

The VVS is thought to contain hierarchically organized repre-
sentations of visual stimuli (Desimone & Ungerleider, 1989). This
idea receives much support from electrophysiological and anatom-
ical studies providing evidence that in general, neurons respond to
increasingly complex stimuli as you move downstream in the VVS
(Tanaka, 1996), and has been referred to by Riesenhuber and Poggio
(1999) as the “Standard Model” of object processing in the cortex.
According to this view, when an object is presented to and encoded
by a subject, it is represented not in a particular ‘object’ module,
but throughout the entire pathway. Yet the object is represented in
different ways in different parts of the pathway: as features in pos-
terior regions, as conjunctions of features in more anterior regions,
and as complex feature conjunctions—perhaps at the level of object
wholes—in anterior regions such as perirhinal cortex (see Fig. 2).

We built a basic computational model to explore whether the
location of perirhinal cortex anteriorly within the VVS, and there-
fore the high-level object representations that it maintains, might
be sufficient to explain the effects of lesions in perirhinal cortex on
a variety cognitive tests (see Fig. 3). In other words, how much can
we understand about the processes that we label memory and per-
ception, etc. simply by considering the hierarchical nature of visual
representation in the brain, without postulating separate memory
systems or processes? For simplicity, the model collapses the VVS

Fig. 2. The proposed organization of visual representations in the ventral visual
stream object processing pathway. A, B, C and D refer to relatively simple features
represented in caudal regions. More complex conjunctions of these features are
stored in more rostral regions, including perirhinal cortex. Figure adapted from
Bussey and Saksida (2002).
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DEMO AVAILABLE

- Human subjects (n = 297) performing 224 oddity tasks online (mturk)   

- Behavioral reliability of  estimates at multiple resolutions  

- Accuracy: category: .97±.03 | object: .71±.07 | item: 60±.05 

- Reaction time: category: .99±.01 | object : 91±.02 | item .62±.05

Estimating model and neural performance on 224 oddity tasks:  
a modified leave-one-one cross-validation strategy 


