Duke BIOMEDICAL ENGINEERING

Interpretable model based phonetic selectivity using high density µECoG - recordings

Introduction

- Understanding speech and language in the brain will help build reliable speech prosthetics
- Phonemes are fundamental units of speech and language (e.g., /m/ & /p/ in mad vs. pad) [1]
- posterior Superior Temporal Gyrus (pSTG) encodes spectrotemporal properties of phonetic information, but its fine-grained spatial resolution is unknown [2]
- **Micro-electrocorticography (µECoG)** can sample the pSTG at high spatial resolution
- Here, we combine µECoG with **interpretable decision-tree analysis** to:
- Validate the technique in rat auditory cortex where the spatial tonotopy is well established
- Establish **phoneme spatial maps** in human pSTG

Methods

Rat

- 61-channel µECoG array
- 8 x 8 grid
- 200 µm diameter electrodes
- 400 µm spacing
- **Electrode Placement**
- Implanted epidurally over primary auditory cortex
- Stimuli
- Measured neural responses to 13 different tones (0.5-32 kHz, 0.5 octave spacings, 50 ms in duration)
- Neural Features
- Broadband (2 100 Hz) evoked responses in 50 ms window, 200 ms after each tone onset

Human

- 256-channel µECoG array
- 12 x 24 grid
- 200 µm diameter electrodes
- 1.72 mm spacing
- **Electrode Placement**
- Implanted subdurally over the pSTG of a patient suffering from epilepsy during resective surgery
- Stimuli
- 58 sentences selected from TIMIT database (Garofolo *et al.*, 1993)

Neural Features

- High gamma (70 – 150 Hz) power integrated in 100 ms window centered at 150 ms post phoneme onset

Suseendrakumar Duraivel¹, Chia-Han Chiang¹, Michael Trumpis¹, Charles Wang¹, Katrina Barth¹, Derek Southwell², Saurabh R. Sinha³, Jonathan Viventi¹, Gregory B. Cogan²

Department of Biomedical Engineering¹, Neurosurgery², and Neurology³, Duke University

False Positive Rate

ACKNOWLEDGEMENTS: We would like to thank Anna Thirakul for help with consenting participants, Seth Foster for his help with the task design, and Shervin Rahimpour for help with surgical preparation.

							5	6		<u>U</u>	Č.			5				<mark>بۇ</mark>	٥.	6				
	24	1 72 mm) =	•		•	e		0	0		•			0	L.	5			٤.	2	.
	2.2	1.72 11111	<u></u>	1		4	0			03	0			•	•	1						٥.	•	
	2		٠.	e ii			<u>()</u>	64	6 ,5	6 #	٥.	•		6	٩.	6	6			•	•			
	1.8		<u>.</u>	•		Į.			•	6 24	<u>.</u>				6	0	0	•		•			1	
	1.6				2			•		6 6	.	6	4	•	6									能主
	1.4							•	6				2:	9					×.					
	1																							
	0.8					s }										1								
3																								
plosive														f	ric	ati	ve							

References

boundaries." *Journal of experimental psychology* 54.5 (1957): 358. [2] Hullett, Patrick W., et al. "Human superior temporal gyrus organization of spectrotemporal modulation tuning derived from speech stimuli." Journal of Neuroscience 36.6 (2016): 2014-[3] Mesgarani, Nima, et al. "Phonetic feature encoding in human superior temporal gyrus." Science 343.6174 (2014): 1006-1010. [4] Insanally, Michele, et al. "A low-cost, multiplexed µECoG system for high-density recordings in freely moving rodents." *Journal of neural engineering* 13.2 (2016): 026030. [5] Polley, Daniel B., et al. "Multiparametric auditory receptive field organization across five cortical fields in the albino rat." Journal of neurophysiology 97.5 (2007): 3621-3638.