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• Speech is a continuous, highly variable acoustic signal
• The human brain effortlessly transforms this input into 

perceptually constant phonemic representations
• Vowels are distinguishable by F1 & F2, but their values vary 

widely, with overlapping distributions, in connected speech
• Complicated by differences between speakers (vocal tract 

length) and within speaker (prosody, coarticulation)
• The brain can normalize across these differences to 

generate single percepts for each vowel, but underlying 
neural computations are unknown

• We performed direct intracranial recordings in Heschl’s 
gyrus (HG) and planum temporale (PT) while 5 patients 
listened to natural speech

• High-gamma activity (HGA) was modulated by vowel ID
• Using encoding models, we investigated which acoustic and 

linguistic vowel representations were encoded by HGA
• Fundamental frequency (f0) and F1 normalized by f0 were 

encoded most consistently across HG & PT

• HGA on Heschl’s gyrus is differentially activated across vowels 
during naturalistic listening conditions

• At some sites, HGA encoded acoustic features
• Raw:

• Duration & loudness (less perceptually relevant)
• Fundamental frequency, 1st formant (more relevant)

• Normalized: formants normalized to f0
• f0-normalized formants may be perceptually relevant for 

normalization across speakers or contexts (e.g. coarticulation)
• Limitations

• Only 1 speaker
• Results are dependent on user-defined input features

• E.g. both f0 & f0-1 chosen in same models: in HGA~F(f0), 
F may be unknown

• Only explored intrinsic cues; future work will also explore 
extrinsic contextual cues
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• HG & PT recorded with sEEG while patients listened to 60 
clips of natural speech (each ~1 min clip followed by 2 
questions to test comprehension)

• Speech annotated for phoneme identity, on/offsets
• Vowel fundamental frequency (f0) and formants F1-4 

extracted (Praat) as the value at the vowel’s midpoint

Figure 1. (A) Natural speech, annotations, and spectrogram, with 
fundamental freq. (f0) and formants (F1 & F2) overlaid. Single 
values (midpoint, see markers) assigned to f0 & F1-4 for every 
vowel. (B) HGA for a single electrode in left HG, recorded in patient 
P1. Blue portion: 500 ms window aligned to æ midpoint. (C) Top-
down STP view and coronal slice of temporal lobe show electrode 
location from (B). (D) Formants were extracted across all clips; 2D 
gaussians fit to each vowel’s distribution. Ellipses: 1 standard 
deviation. Points show the (F1, F2) location of each vowel from (A).

Figure 2. Mean HGA (± std err)
from Fig. 1 electrode & vowels.
Graded HGA closely matches
vowel progression along F1, F2
diagonal (Fig. 1D). F-statistics
calculated via sliding ANOVA.

• HGA calculated (Hilbert transform) then extracted by aligning to each vowel’s midpoint
• Sliding ANOVA used to identify electrodes modulated by vowel ID
• Is HG encoding vowel ID, formants, or something else?
• Encoding models built to predict HGA from acoustic & phonetic features (see Table 1)
• Lasso regularization prevented overfitting and forced sparse feature selection
• Models evaluated by fraction of explained HGA variance (R2)
• Selected features were interpreted as being encoded in HGA

Table 1. List of features included in the encoding model.

Figure 3. (A) Encoding model R2 for 2 electrodes (mean ± std err across CV folds) . (B) 35/50 elecs had 
significant HGA modulation by vowel ID (ANOVA); a subset of these were well-explained by encoding 
models (R2>0.1, dashed lines). Marker type corresponds to patient ID (see labels in C). (C) Anatomical 
locations of significant elecs. Black elecs were significant via ANOVA but did not achieve the R2 cutoff.

RESULTS

Patient 1 2 3 4 5

Comprehension (%) 85 40 58 88 83

Total number of electrodes 6 11 15 7 11

Significant ANOVA 3 8 9 5 10

Encoding model (R2 > 0.1) 1 0 3 4 6

Table 2. Summary of results. Last 3 rows are electrode counts.

• Some electrodes show graded HGA responses (Fig. 2) that 
closely match vowel progression along F1-F2 diagonal (Fig. 
1D). ANOVA F-stat shows time-dependent separability 
across all vowel IDs (not just the 5 exemplars in Fig. 2)

• 35/50 electrodes achieved ANOVA significance (α = .01, 
Bonf. corrected across all patients, channels, & timepoints)

• In 14 electrodes, encoding models could explain >10% of 
HGA variance (Fig. 3)

• Peak R2 occurred at lags of 30 ms (3 elecs) or 40 ms (11)

• For each model, β̃ = |β|/sum(|β|)
• f0 was most strongly encoded in HGA

• 13/14 models: largest β̃i was β̃1/f0

• β̃f0+β̃1/f0=0.63 (mean across 14 models)
• F1/f0 was 2nd most strongly encoded

• 11 models: 2nd or 3rd largest feature
• 12 models: β̃F1/f0 > β̃F1 + β̃1/F1

• Other encoded features:
• Duration
• Loudness (dB)

Figure 4. (A) Coeff magnitudes for each
model were scaled to sum to 1. Mean
scaled coeff mag (±std dev) for top 5
features is shown. (B) For each model,
scaled coeff mags were sorted, and the
first N features that sum to 0.9 were kept.
Bars represent the percent of total models
(out of 14) that kept that feature.
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F1/F3, F2/F3 [1] Vowel ID Binary [i, æ, ə, …]

log(F2/F1), log(F3/F1), log(F4/F1) [2] Phonetic features Height, front/back, rounded

log(F1/f0), log(F2/F1), log(F3/F2) [3] Formants & inverses F1,…, F4; F1-1,…,F4-1

log(F1/f0), log(F2/F1), log(F3/F2) [4] Fund. freq. & inverses f0, f0-1

log(F1/F*), log(F2/F*), log(F3/F*) [5] f0-norm. formants F1/f0, F2/f0, F3/f0

F* = geomean(F1, F2, F3) Acoustic props. dB, duration


