

Eli Zaleznik, Joonkoo Park

Introduction

- Sequences underlie most complex behavior.
- Counting sequences are critical for learning abstract number processes.^[1]
- Despite this, the neural bases of counting have never been directly studied or theorized, and they do not match well existing sequence or number theory.^[2]
- Violation of expectation is a useful way to measure sequence processing and has been validated for counting sequences. ^[2,3]
- Question: What kinds of knowledge are contained in counting sequences?

Hypotheses

We predict representation of counting sequences in sensory, motoric, magnitude, and linguistic codes that implicate auditory cortices, motor cortices, parietal cortices and frontal cortices, respectively.

Participants & Imaging Procedure

- 37 participants (F = 26) in a 3T Siemens MRI. 6 runs x 48 trials.
- BOLD T2* parameters: TR = 1.2s, TE = 30ms, Flip interval = 69° FOV = 210mm, no. axial slices = 48, voxel dimensions = 3mm * 3mm * 2.5mm.

Stimuli

computer voice and written word.

Transitional knowledge within counting sequences is processed across multiple levels of cortical hierarchy

Department of Psychological and Brain Sciences, University of Massachusetts Amherst

Methods

Voice Expectation Match Mismatch

MVPA on (Ordered – Unordered) by consecutiveness condition, using C=1 approach in libSVM. Feature selected top 10% of univariate voxels and created a null distribution through 10,000 permutations of random class labels to calculate p values.

Univariate Results

R	Anatomical Region	XYZ (MNI)	Mean Z-score	q fdr	nVoxels
	rIFG – Triangularis	48,11,19	5.56	<.001	177
R	rIFG – Opercularis	42, 35, 14	4.20	.010	92
	rIPS	57, -31, 49	4.16	.022	56

Main effect of Voice Expectation

L	Anatomical Region	XYZ (MNI)	Mean Z- score	q fdr	nVoxels
	1STG	63, -31, 7	6.17	<.001	190
R	rSTG	-66, -34, 7	5.98	<.001	190

rderedness			
456	3546		
457	3547		

Main effect of Orderedness

Tested MVP
e.g., [3 4

ROI	Classification Accuracy	p value
Oper	58.45%	<.0001
Tri	61.67%	<.0001
IPS	55.32%	.0074
rSTG	57.77%	<.0001
1STG	56.32%	.0004
SMA	47.56%	.8640

- and bilateral STG.
- Counting sequences engage an auditory code, magnitude representations, and linguistic representations.
- We were surprised by lack of SMA activity, despite its apparent relation to domaingeneral ordering.
- We suggest that individual elements that contain magnitude are being "bound" together into a sequence in rIFG.

[1] Fuson, K. C. (2012). Children's Counting and Concepts of Number. Springer Science & Business Media. [2] Dehaene, S., Meyniel, F., Wacongne, C., Wang, L., & Pallier, C. (2015). The Neural Representation of Sequences: From Transition Probabilities to Algebraic Patterns and Linguistic Trees. Neuron, 88(1), 2–19. [3] Lang, S., & Kotchoubey, B. (2002). Brain responses to number sequences with and without active task requirement. *Clinical Neurophysiology*, 113(11), 1734–1741.

Cognitive **Developmental Neuroscience Lab**

MVPA Results

'A on interaction: e.g., [3 4 5 6 > 3 5 4 6] > [3 5 4 7 > 3 5 4 7] Five ROIs identified in whole-brain ANOVA & anatomically-defined SMA.

Discussion

• Our hypothesis was supported by MVPA analysis revealing patterns of activation to violated counting sequences in rIPS, rIFG,

References