Transitional knowledge within counting sequences is processed across multiple levels of cortical hierarchy
 Eli Zaleznik, Joonkoo Park
 Department of Psychological and Brain Sciences, University of Massachusetts Amherst

Introduction

- Sequences underlie most complex behavior.
- Counting sequences are critical for learning abstract number processes. ${ }^{[1]}$
- Despite this, the neural bases of counting have never been directly studied or theorized, and they do not match well existing sequence or number theory. ${ }^{[2]}$
- Violation of expectation is a useful way to measure sequence processing and has been validated for counting sequences. ${ }^{[2,3]}$
- Question: What kinds of knowledge are contained in counting sequences?

Hypotheses

- We predict representation of counting sequences in sensory, motoric, magnitude, and linguistic codes that implicate auditory cortices, motor cortices, parietal cortices and frontal cortices, respectively.

Participants \& Imaging Procedure

- 37 participants $(F=26)$ in a 3T Siemens MRI.
- 6 runs x 48 trials.
- BOLD T2* parameters: $\mathrm{TR}=1.2 \mathrm{~s}, \mathrm{TE}=30 \mathrm{~ms}$, Flip interval $=69^{\circ}$ FOV $=210 \mathrm{~mm}$, no. axial slices $=$ 48 , voxel dimensions $=3 \mathrm{~mm} * 3 \mathrm{~mm} * 2.5 \mathrm{~mm}$.

Stimuli

- Numbers 1 through 10 presented in auditory computer voice and written word.

Methods

- All trials fell into a $2 \times 2 \times 2$ design. Example trials:

	Orderedness	
Consecutiveness	3456	3546
	3457	3547

MVPA on (Ordered - Unordered) by consecutiveness condition, using $\mathrm{C}=1$ approach in libSVM.

- Feature selected top 10% of univariate voxels and created a null distribution through 10,000 permutations of random class labels to calculate p values.

Univariate Results

Main effect of Orderedness

Main effect of Voice Expectation

Anatomical Region	$\mathbf{X} \mathbf{Y} \mathbf{Z}$ (MNI)	Mean $\mathbf{Z -}$ score	$\mathbf{q}_{\text {FDR }}$	nVoxels
1STG	$63,-31,7$	6.17	$<.001$	190
R ${ }^{\text {rSTG }}$	$-66,-34,7$	5.98	$<.001$	190

MVPA Results

- Tested MVPA on interaction:
e.g., $[3456>3546$] > [3547>3547]
- Five ROIs identified in whole-brain ANOVA \& anatomically-defined SMA.

ROI	Classification Accuracy	\mathbf{p} value
Oper	58.45%	$<.0001$
Tri	61.67%	$<.0001$
IPS	55.32%	.0074
rSTG	57.77%	$<.0001$
ISTG	56.32%	.0004
SMA	47.56%	.8640

Discussion

- Our hypothesis was supported by MVPA analysis revealing patterns of activation to violated counting sequences in rIPS, rIFG, and bilateral STG.
- Counting sequences engage an auditory code, magnitude representations, and linguistic representations.
- We were surprised by lack of SMA activity, despite its apparent relation to domaingeneral ordering.
- We suggest that individual elements that contain magnitude are being "bound" together into a sequence in rIFG.

References

