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Background
Imprecision in working memory can be caused by random diffusion and 
drift towards stable attractor states. By fitting a discrete attractor model, 

both behavioral parameters increase as a function of memory load 

(Panichello, et al., 2019), and attractors can adapt to different 
environmental statistics. 

In our recent work (Yu et al., 2020), we have demonstrated a dissociation 

of the neural correlates of load-dependent changes in diffusion and of 
drift, with the former related more to load-dependent activity in 

frontoparietal cortex and the latter related more to that in occipital 
cortex. 

Here we further investigated the neural mechanism of the adaptive 
nature of attractor dynamics in a training study in combination with fMRI. 

Working memory is our ability to maintain information
without direct sensory input. It allows us to decouple
behavior from the immediate world, serving as the

substrate for planning and problem solving1. Despite its funda-
mental role in cognition, information in working memory is not
stored with perfect fidelity. Errors accrue over time2–5 and with
the number of items simultaneously held in working memory6–11.

Errors in working memory are thought to be due, in part, to
noise in the neural representations underlying memories. Ran-
dom noise can cause memory representations to diffuse away
from their original state over time, leading to behavioral
errors12,13. This is consistent with theoretical work that suggest
memory representations are maintained in a continuum of stable
states (known as a ‘line’ or ‘ring’ attractor14–16). Such systems can
encode continuous variables with high precision and in an
unbiased manner. This is important for many domains, such as
visual working memory for color or orientation. However, a
disadvantage of such systems is that they integrate noise: per-
turbations of representations along the stable continuum are
maintained, resulting in a steady accrual of error over time.
Because of this, variability in spiking activity places a bound on
the accuracy of working memory representations15.

In contrast, theoretical work has suggested the impact of noise
can be mitigated if memories are stored using a finite set of stable
states known as discrete attractors17–21. In such systems, memory
representations drift towards the attractor states. Once there,
memories are stable and therefore resistant to diffusive noise.
However, this comes at the the cost of discretizing continuous
information, reducing precision and inducing bias into memory.

Here we test whether the brain uses discrete attractor dynamics
to mitigate the impact of noise on working memory. By fitting a
flexible dynamical systems model to data from individual

subjects, we estimate the forces governing the temporal evolution
of working memory representations in both humans and mon-
keys. We show that discrete attractor dynamics better explain
behavior than competing models of memory dynamics. Indeed,
discrete attractor dynamics account for the distribution, bias, and
precision of working memory reports and the accumulation of
error in memory over time. Furthermore, these dynamics adapt
to changes in context and memory load in a way that minimize
errors in working memory.

Results
Systematic error in memory increases with load and time. To
understand the dynamics governing working memory repre-
sentations, we examined the behavior of humans (N = 90) and
monkeys (N = 2) performing a delayed estimation task22
(Fig. 1a). Subjects were instructed to remember the color of 1 to 3
simultaneously-presented stimuli located at different positions on
the display (humans saw 1 or 3 items; monkeys saw 1 or 2). After
a variable memory delay, subjects reported the remembered color
at a cued target location using a continuous scale. Stimulus colors
were drawn uniformly from an isoluminant circular color space.
We quantified error as the angular deviation between the target
color and the subject’s report. As expected2–11, the average
absolute error increased as a function of delay and working
memory load in both humans and monkeys (Fig. 1b; humans (H):
load, F(1, 89)= 147.23, p < 1 × 10−15; delay, F(1, 89)= 85.44, p=
1.17 × 10−14; load x delay, F(1, 89)= 13.92, p= 3.36 × 10−4,
analysis of variance; monkey W (W): load, p < 0.001; delay, p=
0.006; load x delay, p= 0.495, bootstrap; monkey E (E): load, p <
0.001; delay, p= 0.009; load x delay, p= 0.303, bootstrap).

Despite the uniform distribution of target colors, the responses
of both human and monkey subjects were significantly non-
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Fig. 1 Memories cluster in a continuous working memory task. a Top: humans (N= 90) performed a color delayed-estimation task in which they reported
the color of a spatially-cued sample after a variable delay. Humans made their report by adjusting the hue of the response probe by rotating a response
wheel (black circle) using a mouse. We rotated the mapping between wheel angle and color on each trial to avoid spatial encoding of color memories.
Bottom: monkeys (N= 2) performed a similar task. A symbolic cue indicated which sample to report (top or bottom). Monkeys reported a specific color
value using an eye movement to a color wheel that was rotated on each trial. b Distribution of angular error for humans (top) and monkeys (bottom). Error
increased with load and delay time. Gray lines= low load, blue lines= high load, solid lines= short delay, dashed lines= long delay. Inset: Error is
calculated as the angular deviation between the color of the cued sample and the reported color in color space. c Non-uniform distribution of reported
colors for humans (top) and monkeys (bottom). Gray line shows the distribution of target colors. Source data are provided as a Source Data file
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Visual cortex showed higher discriminability for common colors  
during delay for training vs. post-training, and vice versa during recall.

Recruitment of discrete attractor dynamics in working memory persists after extensive training, suggesting it is a  
stable mechanism of working memory. 

At the neural level, the effect of attractor biases can be observed at the early stage of visual processing,  

consistent with our previous finding on load-dependent changes in lateral occipital cortex.
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