

poster A41

Cognitive Neuroscience Society 2020 Virtual Meeting

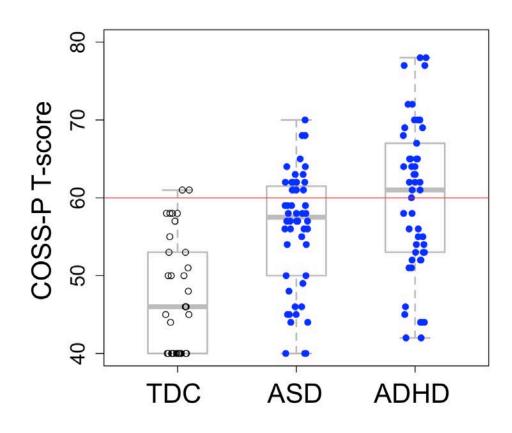
Brain plasticity following Organizational Skills Training in elementary school students: A pilot resting-state study

Yuliya Yoncheva, Joanna Tabor, Shereen Elmaghrabi, Christina Di Bartolo, Greta Conlon, Eva Petkova, Howard Abikoff, Richard Gallagher & F Xavier Castellanos

Yuliya.Yoncheva@nyulangone.org osf.io/rsx36

Funding: NIMH Phased Innovation Grant R61MH113663 (PI: F. Xavier Castellanos)

Background: Children's Organizational Skills Scale (COSS)


- Memory and materials management; organized actions; task planning
- Child, parent, teacher informants

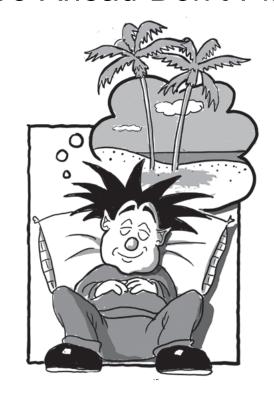
1.	My child starts projects but doesn't complete them.	HARDLY EVER OR NEVER	SOMETIMES 2	MUCH OF THE TIME	JUST ABOUT ALL OF THE TIME
2.	Once my child gets ready to do schoolwork or projects, he/she has trouble knowing how to start.	□1	 2	□3	4
3.	My child is organized.		\square_2	\square_3	\square_4
4.	My child seems to run out of time before school assignments are finished.	□ 1	 2	□3	4
5.	My child has to stay up late to finish school projects or homework.		\square_2	\square_3	4
6.	When my child has a big project to do, he/she doesn't know where to begin.	□1	 2	□ ₃	4
7.	When my child has to do something, she/he puts it off as long as possible.	□1	\square_2	□ ₃	4

Background: Children's Organizational Skills Scale (COSS)

 Captures variability in neurodevelopmental disorders (beyond ADHD)

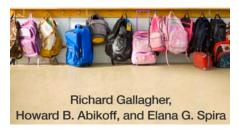
Fig 1. COSS Parent Total T-scores in a sample of 3rd-5th graders (n=142): typically developing children (TDC), children with ASD & with ADHD.

Background: Organizational struggles (glitches)



Go-Ahead-Forget-It

Time Bandit


Go-Ahead-Don't-Plan

Background: Organizational Skills Training (OST)

Organizational Skills Training for Children with ADHD

An Empirically Supported Treatment

- parents and teachers: learn behavior modification
- children: direct instruction and skills practice
- individual sessions with a therapist

The child learns how to have the **Mastermind** control the glitches

Background: Promises & challenges of original OST

OST produces robust sustained remediation

J Consult Clin Psychol. Author manuscript; available in PMC 2014 Feb 1.

Published in final edited form as:

J Consult Clin Psychol. 2013 Feb; 81(1): 113-128.

Published online 2012 Aug 13. doi: 10.1037/a0029648

PMCID: PMC3549033

NIHMSID: NIHMS405441

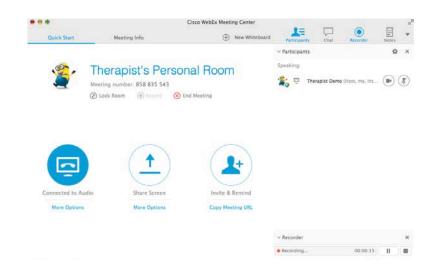
PMID: 22889336

Remediating Organizational Functioning in Children with ADHD: Immediate and Long-Term Effects from a Randomized Controlled Trial

Howard Abikoff, Richard Gallagher, Karen C. Wells, Desiree W. Murray, Lei Huang, Feihan Lu, and Eva Petkova

Challenges to wider OST adoption: time + travel

20 in-person visits (twice a week) over 10 weeks during the school year

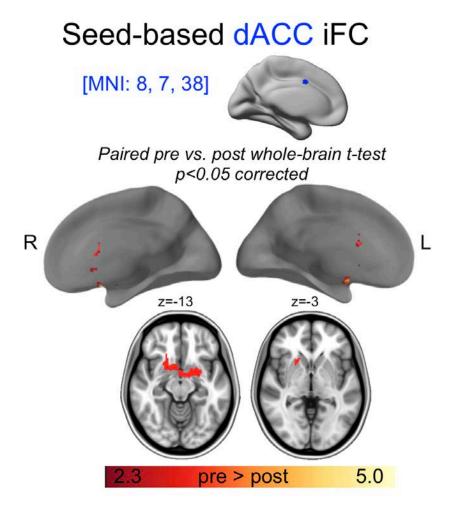

Current study design: OST-modified to expand accessibility

12 in-person weekly sessions (school year) +

new **remote** means to increase frequency of contacts with the **OSTm** therapist

telepsychiatry

1. weekly 30-minute video session with parent & child at home



2. electronic Behavior Record:

the therapist receives child's daily points logs

Prior imaging study: OST produces resting-state ∆ iFC

Fig. Resting-state fMRI data from open-label OST intervention in children with ADHD (n=15).


Significant post-OST changes in intrinsic functional connectivity (iFC) between dorsal Anterior Cingulate Cortex (dACC) and areas including ventral striatum.

Data not shown: improvement in parent-rated organizational skills (COSS-P scores) post-OST correlates with this Δ iFC (r_{13} =0.57, p<0.05).

OSTm imaging study: pre-registered neural target =

△ resting-state iFC between dACC & aVS_{FP}

pre-registered at osf.io/5m5sx

Masks centered on pilot OST results spanning 3 network-defined subregions of anterior ventral striatum (**aVS**), corresponding to frontoparietal (**FP**), limbic & default mode networks [based on 7 Yeo* iFC functional striatal parcellations]

^{*}Choi E, Yeo B, Buckner RL (2012) The organization of the human striatum estimated by intrinsic functional connectivity. *J Neurophysiol*. 108(8):2242-2263.

OSTm imaging study: question

Examine involvement of the **pre-registered** neural target (Δ iFC dACC–ventral striatum) in behavioral improvement following **modified** Organizational Skills Training (**OSTm**) in 3rd-5th graders with organizational impairments

OSTm imaging study: procedures

Pre-OSTm *fMRI* 7-min fixation

OSTm intervention
12 weeks

Post-OSTm *fMRI* 7-min fixation

n=29 students in 3rd, 4th or 5th grade

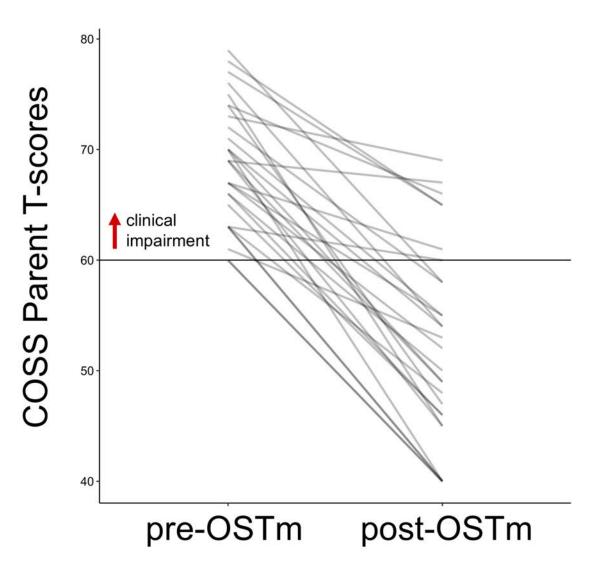
- Mean age: 9.1 years, girls n=9 (31%)
- Elevated (≥ 1SD) and impairing organizational deficits:
 Children's Organizational Skills Scales (COSS) Parent total T-scores
 - meeting DSM-5 criteria for ADHD not required
- IQ > 85; non-impaired language skills
- No paraprofessional help, no self-contained special ed. classroom
- Must provide high-quality pre-OSTm fMRI imaging data (FD_J < 0.13 mm)

OSTm study: head micro-motion (FD_J)

Jenkinson Framewise Displacement (FD_J)

	Pre-OSTm	Post-OSTm
Mean FD _J	0.068 mm	0.070 mm
Min FD _J	0.039 mm	0.037 mm
Max FD _J	0.103 mm	0.123 mm

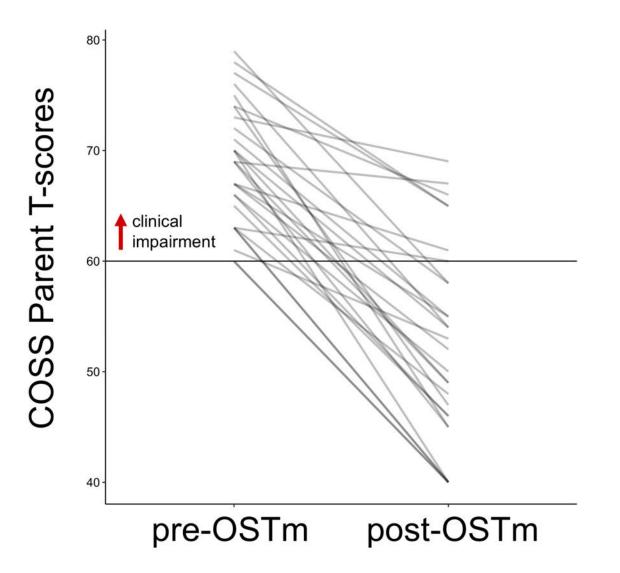
Equivalent mean FD_J for pre- vs. post-OSTm scans (two-one-sided tests procedure: d_z =0.1 significantly within $d_z\pm0.5$ equivalence bounds, t_{28} =-2.2, p<0.02)



OSTm study: neuroimaging methods https://osf.io/rsx36/

- Acquisition
 - 3 Tesla Siemens Prisma
 - Adolescent Brain Cognitive Development study imaging protocol:
 T1 MPRAGE (0.8x0.8x0.8mm) EPI: 7-min fixation (TR=0.8s, 2.4x2.4x2.4mm)
- Image pre-processing and Seed-based Correlation Analysis
 - C-PAC v1.4.1 https://fcp-indi.github.io/docs/user/index
 - seed: dACC = MNI [8, 7, 38]
 - masks: aVS, aVS_{FP} (<u>pre-registered</u> prior to R61MH113663 submission)
 - z-scored iFC between dACC and aVS_{FP} reported
 - Pearson's correlation between pre- minus post-OSTm COSS-Parent Total T-scores (i.e., behavioral outcome) and pre- minus post-OSTm z-scored iFC dACC-aVS_{FP} (i.e., neural target circuitry)

Results: Remediation of organizational deficits post-OSTm

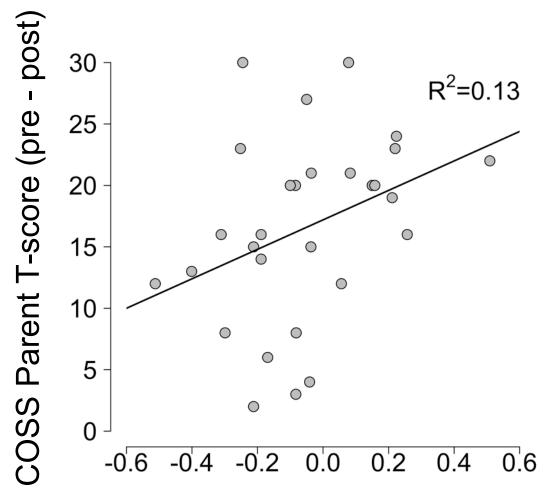


 Each child's parent-rated organizational dysfunction improved after OSTm (t₂₈=11.8, p<0.01; Cohen's d=2.2)

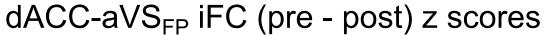
*Higher scores indicate more frequent organizational deficits

Results: Remediation of organizational deficits post-OSTm

 Each child's parent-rated organizational dysfunction improved after OSTm (t₂₈=11.8, p<0.01; Cohen's d=2.2)

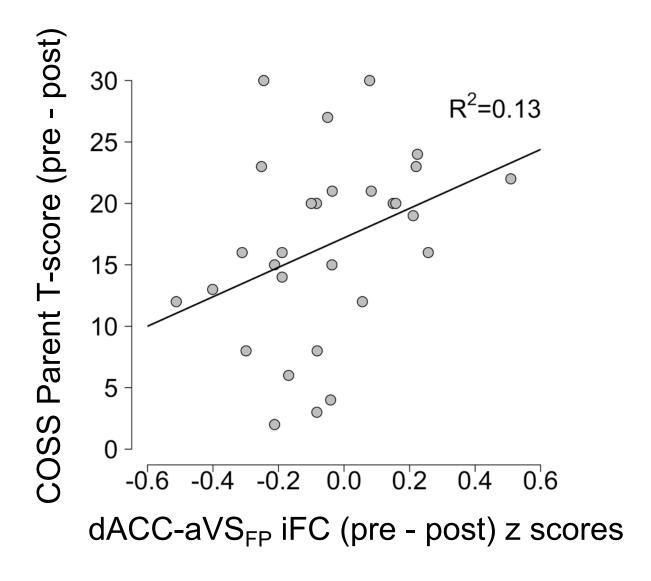


 Consistent robust behavioral effects: teachers and children also reported superior org. skills post-OSTm (both p<0.01, Cohen's d=0.88; d=0.67; data not shown).



*Higher scores indicate more frequent organizational deficits

Results: ∆iFC neural target linked to post-OSTm behavioral gains



∆ strength of functional connectivity at rest between the dACC & the pre-registered ventral striatal mask corresponding to Yeo's Frontoparietal network accounts for 13% of the variance of the improvement in organizational skills after OSTm intervention.

Results: \(\Delta \) iFC neural target linked to post-OSTm behavioral gains

Neural target engagement: Pre-OSTm vs post-OSTm changes in dACC-aVS iFC with effect size Cohen's d=0.40(n=29) or Cohen's d=0.49(n=28 without an outlier).

Summary

- Successful modification of the evidenced-based OST intervention:
 OSTm is feasible, acceptable to parents and effective (80% of treated fall below clinical impairment cut-off after OSTm completion).
- Convergent pilot results and current findings with pre-registered brain masks suggest that the circuitry linking dACC and aVS may mediate OSTm improvement.
- If replicated, the association between robust OSTm-driven boosts in organizational, time management and planning skills & alterations in resting-state connectivity may enable the exploration of the neural mechanisms of organizational dysfunction and its remediation.

