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Human cognition exhibits a striking degree of variability: Sometimes we rapidly forge new6

associations whereas at other times new information simply does not stick. Correlations be-7

tween neural activity during encoding and subsequent retrieval performance have implicated8

such “subsequent memory effects” (SMEs) as important for understanding the neural basis9

of memory formation. Uncontrolled variability in external factors that also predict mem-10

ory performance, however, confounds the interpretation of these effects. By controlling for a11

comprehensive set of external variables, we investigated the extent to which neural correlates12

of successful memory encoding reflect variability in endogenous brain states. We show that13

external variables that reliably predict memory performance have relatively small effects on14

electroencephalographic (EEG) correlates of successful memory encoding. Instead, the brain15

activity that is diagnostic of successful encoding primarily reflects fluctuations in endogenous16

neural activity. These findings link neural activity during learning to endogenous states that17

drive variability in human cognition.18

The capacity to learn new information can vary considerably from moment to moment. We19

all recognize this variability in the frustration and embarrassment that accompanies associated20
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memory lapses. Researchers investigate the neural basis of this variability by analyzing brain21

activity during the encoding phase of a memory experiment as a function of each item’s subsequent22

retrieval success. Across hundreds of such studies, the resulting contrasts, termed subsequent23

memory effects (SMEs), have revealed reliable biomarkers of successful memory encoding.1–3
24

A key question, however, is whether the observed SMEs indicate endogenously varying brain25

states, or whether they instead reflect variation in external stimulus- and task-related variables,26

such as item difficulty or proactive interference, known to strongly predict subsequent memory.427

Studies characterizing SMEs generally attribute them to endogenous factors affecting encoding28

processes and/or to specific experimental manipulations (such as encoding instructions) aimed at29

directly affecting these processes.3, 5, 6 At the same time, some of the strongest predictors of recall30

performance are characteristics of individual items (e.g., pre-experimental familiarity or position in31

the study list)7–9 which are difficult to investigate, given that the successful retrieval of individual32

items is not under direct experimental control. Such idiosyncratic effects are therefore serious33

confounds in SME analyses. In cases where encoding conditions are explicitly manipulated, it is34

difficult to disentangle these and other external effects from ongoing endogenous fluctuations that35

also affect encoding success. The relative contributions of endogenous and external factors to the36

SME have thus yet to be established.37

Here we approach these challenges in two ways using a large free-recall data set comprising38

97 individuals who each had their EEG recorded while they studied and recalled 24 word lists in39

each of at least 20 experimental sessions that took place over the course of several weeks. As40
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shown in Figure 1a, the presentation of each list was followed by a distractor task and a free recall41

test. Each list contained 24 words and the same 576 words (24 words in 24 lists) were presented42

in each session, but their assignment to lists, and serial positions within lists, varied (we also refer43

to individual word presentations as “items” irrespective of the word identities). Our first approach44

closely builds on standard SME analyses that compute a contrast for neural activity during each45

item’s presentation in the study list. Rather than only predicting subsequent memory as a binary46

variable, however, we also statistically accounted for a comprehensive list of external factors that47

correlate with recall performance and computed SMEs for the corresponding residuals. Comparing48

SMEs for these residuals with the standard item-level SME predicting binary retrieval success thus49

allowed us to estimate the relative contributions of endogenous neural variability and external50

factors to the SME (to the extent that SMEs are driven by external factors, SMEs should be absent51

when the effects of these external factors are statistically removed from recall performance).52

For our second approach we calculated list-level SMEs (rather than the standard item-level53

SMEs), leveraging evidence that endogenous factors associated with cognitive function vary slowly.54

Specifically, sequential dependencies in human performance4, 10–12 as well as investigations of en-55

dogenous neural fluctuations that drive variability in evoked brain activity and overt behavior13–19
56

suggest that endogenous factors operate at time scales that are slower than the time allocated to57

the study of individual items in standard memory tasks (many seconds or minutes rather than a58

few seconds or less). To calculate list-level SMEs, we averaged epochs of EEG activity following59

the presentation of individual study items within each list and used these list-averaged epochs to60

predict the proportion of recalled words in each list. This approach eliminates or severely reduces61
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the effects of item-specific external factors (because we are averaging neural activity across all62

study periods in a list), but the list-level SME could still reflect other external factors that also63

affect recall performance (such as session-level time-of-day effects or list-level proactive interfer-64

ence effects).4 We therefore also statistically removed effects of list and session number (as well65

as effects of the average “recallability” of the words comprising each list; see methods for details)66

and computed SMEs for the corresponding residuals. As with the item-level SMEs, comparing67

the SMEs predicting list-level recall to the SMEs predicting residuals of list-level recall after ac-68

counting for external factors associated with each list and experimental session thus allowed us69

to estimate the extent to which list-level SMEs are driven by endogenous factors associated with70

encoding success.71

Results72

The standard item-level subsequent memory analysis contrasts neural activity during the encoding73

of subsequently recalled and non-recalled items. The present experiment sequentially displayed74

lists of items (words) for study and tested memory in a delayed free recall task (Figure 1a). During75

the encoding period of each studied item, we calculated the spectral power of the EEG signal at76

frequencies between 2 and 200 Hz. Figure 1b shows an excerpt of an actual study list with asso-77

ciated z-transformed spectral power, shown as a joint function of encoding time and frequency for78

each excerpted item. The average time-frequency spectrogram for recalled and non-recalled items,79

shown in Figure 1c, illustrates the spectral subsequent memory effect reported in prior studies.1, 3
80

Specifically, subsequently recalled items exhibit greater high frequency (> 30 Hz) activity and81
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Figure 1: (a) Illustration of an individual trial in our experiment consisting of a study list followed
by a distractor task, and a free recall test. There were 24 of these trials in each experimental
session and each study list consisted of 24 items. See methods for details. (b) z-transformed
power around the presentation of study words during the beginning and end of one participant’s
(ID: 374) 4th study list in the 16th experimental session. The study words are indicated at the
top of each sub-panel with bold italic font indicating subsequent recall. (c) Average power for
subsequently unrecalled (left) and subsequently recalled (right) words during study across all lists
from all participants (we averaged all data within participants and calculated the shown t-values
across participants). All of our analyses were based on neural activity between 0.3 and 1.6 s
following study word onset (indicated with vertical black lines) and the average power across
this time interval is also illustrated. For this visualization, we aggregated EEG activity across 28
superior electrodes (see methods for details).
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Figure 2: Mean probability of recall as a function of serial position across all participants (top
row) and associated neural activity (averaged between 0.3 and 1.6 s after the onset of study items)
for all, subsequently recalled, and subsequently not-recalled trials respectively (we averaged all
data within participants and calculated the shown t-values across participants). Error bars indicate
95% confidence intervals. For this visualization, we aggregated EEG activity across 28 superior
electrodes (see methods for details).

reduced alpha power (8–12 Hz) as compared with not-recalled items. Before commencing our82

analyses we had decided to focus on a time window between 0.3 and 1.6 s following the onset83

of each study item to maximize our chance of capturing item-specific effects in our SME con-84

trasts. However, as is evident in Figure 1c, the SME was sustained throughout the entire 1.6 s85

during which the item appeared on the screen and also in the pre-stimulus interval (consistent with86

previous reports of pre-stimulus SMEs5, 20–23).87
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The power of the SME analysis lies in its ability to reveal encoding processes that lead88

to successful recall. However, the standard item-level SME conflates a multitude of factors that89

determine the recallability of any given item. The position of an item in the study list constitutes90

one such factor. The top of Figure 2 illustrates the serial position effect in our delayed free-recall91

experiment. As expected based on prior work, we observed superior recall for early list items92

(the so-called primacy effect). The mental arithmetic task between study and test attenuates the93

recency effect that is typical of immediate recall.9 Given the strong effect of serial position on94

recall performance, we can expect any SME to also reflect a contrast of neural activity associated95

with different serial positions. The second row of Figure 2 shows the neural activity associated96

with the encoding interval at each serial position irrespective of recall status. Here one sees a97

marked shift in neural activity across serial positions: Neural activity at early serial positions98

resembles that associated with recalled items and that at later serial positions is similar to that99

associated with not-recalled items (cf. Figure 1c). The last two rows of Figure 2 illustrate that this100

pattern is not simply due to the confound between recalled status and serial position: Even when101

we plot the pattern of spectral activity as a function of serial position separately for recalled and102

not-recalled items, neural activity at early serial positions resembles that associated with recalled103

items and that at later serial positions is more similar to that associated with not-recalled items104

in the standard SME (cf. Figure 1c). This illustrates how the subsequent memory analysis can105

be misleading: differences between recalled and non-recalled items may be indexing differences106

between primacy and non-primacy items. Controlling for the effect of serial position represents a107

logical solution to this problem. However, serial position is but one of many variables known to108
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influence recall performance. We thus introduce a statistical framework to separate the effects of109

known external factors from the hypothesized endogenous variability driving encoding success, as110

described below.111

Our analytic approach combines multivariate classification of neural data24, 25 with a multi-112

factor model of external variables shown to influence item-level recall performance.4 To implement113

a multivariate analogue to the standard SME analysis, we trained L2 regularized logistic regres-114

sion classifiers using brain activity to predict the recall status of individual items (the performance115

of these models indexes what we refer to as an “uncorrected SME”). We also trained L2 regular-116

ized linear regression models using brain activity to predict residuals of recall performance after117

statistically controlling for the effects of external factors that also predict recall performance (the118

performance of these models indexes what we refer to as a “corrected SME”).119

For both uncorrected and corrected SMEs, we wish to evaluate how well each model predicts120

(residuals of) recall performance in held out sessions. Typical metrics of model performance differ121

between binary classification (as in our uncorrected SME analyses) and continuous regression122

models (as in our corrected SME analyses). To directly compare both types of SMEs, we computed123

correlations between model predictions and (residual) recall performance. For the uncorrected124

SME, this is a point-biserial correlation because recall performance is a binary variable (each125

item is either recalled or not) and the model prediction is a continuous measure corresponding to126

the predicted recall probability of each item. For the corrected SME, this is a standard product-127

moment correlation between the continuous residual recall performance and the continuous model128
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Figure 3: (a) Distribution of uncorrected item-level SMEs (“item”) across all participants and of
corresponding corrected SMEs accounting for all factors or all but the indicated factor respectively
(a ¬ prefix signifies that the indicated factor was omitted). Overlaid boxplots indicate the quartiles
of the distribution with a notch showing the bootstrapped 95% CI around the median. Whiskers
extend to 1.5× the inter-quartile range. (b) Mean correlations between power at different frequen-
cies (aggregated across 28 superior electrodes) and the respective (residuals of) item-level recall
performance across all participants (lined up with the corresponding SMEs in Panel a). The black
horizontal lines indicate zero. Error regions indicate 95% CIs.

prediction (see Methods for details). Both of these models use spectral features of EEG activity129

during word encoding to predict that item’s (residual) recall status.130

The correlation between model predictions and (residual) item-level recall performance quan-131

tifies the association between neural features during encoding and subsequent (residual) recall132

performance—it serves as our multivariate SME measure. The top of Figure 3a shows the distribu-133

tion of these correlations across participants for the uncorrected SME (distribution marked “item”)134

relating neural features to the recalled status of individual items. This uncorrected SME was signif-135
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icant (M = 0.16, t(96) = 22.681, SE = 0.007, p < 0.001, d = 2.303) indicating that the different136

average activity patterns for recalled and not-recalled items shown in Figure 1c were indeed as-137

sociated with a reliable item-level SME. The next distribution (labeled “item|all”) corresponds to138

the corrected SME statistically controlling for all external factors. Specifically, these correlations139

quantify the relation between neural features and the residuals of logistic regression models pre-140

dicting recall status on the basis of individual item-recallability, serial position, list number within141

the current session, and session number within the experiment. This corrected SME, was also sta-142

tistically significant (M = 0.12, t(96) = 19.015, SE = 0.006, p < 0.001, d = 1.931), indicating143

a substantial SME, even after controlling for external factors. The size of this SME was somewhat144

smaller than that for the uncorrected recall performance (t(96) = 9.738, SE = 0.004, p < 0.001,145

d = 0.989) reflecting the fact that the uncorrected SME does include the effects of some external146

factors.147

To better understand how the different factors affect the SME, we repeated this analysis, but148

held out each of the external factors in turn. The remaining parts of Figure 3a show the results149

of these analyses without controlling for the effects of recallability, serial position, list number,150

and session number respectively. All resulting SMEs are positive (M = 0.11–0.15, t(96) =151

16.341–22.471, SE = 0.006–0.007, ps < 0.001, d = 1.659–2.282) and significantly different152

from the SME for uncorrected recall performance (t(96) = 4.726–13.438, SE = 0.003–0.004,153

ps < 0.001, d = 0.479–1.364) as well as from that correcting for all external factors (t(96) =154

5.939–10.790, SE = 0.001–0.003, ps < 0.001, d = 0.603–1.096). This indicates that each of the155

external factors contributes to the difference between the size of the uncorrected and the corrected156
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SME and that none of these factors can account for this difference in isolation. Serial position,157

however, explains most of this discrepancy—when controlling for all other factors, the correspond-158

ing SME is almost as large as the uncorrected SME (mean correlation of 0.15 as opposed to 0.16)159

and additionally also controlling for serial position is responsible for reducing the SME to a mean160

correlation of 0.12.161

To the extent that the uncorrected SME reflects both endogenous and external factors, we162

would expect that statistically removing the effects of external factors would reduce the size of163

the SME. Correspondingly, only partially removing effects of external factors (e.g., by holding164

out the removal of one of the external factors like we did in the analyses described above) should165

result in SMEs that fall somewhere between the uncorrected SME and the SME correcting for166

more external factors. This is the pattern we observed, with one notable exception: when we167

statistically removed the effects of all factors except for the session number, the resulting SME168

was slightly smaller than that for the SME also removing that effect (mean correlation of 0.11169

as opposed to 0.12). This indicates that recall performance varies with session number, but that170

this effect of session number is not effectively captured by our measures of brain activity. Hence,171

when we statistically controlled for the effects of session number we removed variability in recall172

performance that we could not account for with our measures of brain activity, leading to a slightly173

larger SME (and, conversely, a failure to remove the effects of session number reduced the SME).174

As Figure 3a also shows, there was substantial overlap between the distributions for the un-175

corrected and corrected SMEs demonstrating that the effects of external factors were small relative176
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to the size of the SME. Specifically, the effect sizes associated with the uncorrected and corrected177

SMEs corresponded to Cohen’s26 ds of 2.303 and 1.931, respectively (with the Cohen’s ds for178

corrected SMEs holding out one of the factors ranging between 1.659 and 2.282). The difference179

between the uncorrected and corrected SME was about half that size (Cohen’s d of 0.989 and180

0.479–1.364 for the differences between the uncorrected SME and the corrected SMEs holding181

out one of the factors). Another way to interpret the sizes of the uncorrected and corrected SMEs182

relative to their difference is by directly evaluating the corresponding correlations and their differ-183

ence. According to Cohen’s convention, the correlations for all SMEs correspond to a small effect184

size (0.1 < r < 0.3). Differences in correlations can be assessed with Cohen’s q (i.e., the differ-185

ence between the Fisher-z transformed correlations) which is 0.041 for the difference between the186

uncorrected and corrected SME (and ranges between 0.018 and 0.054 for the differences between187

the uncorrected SME and the corrected SME holding out one of the factors)—all well below the188

threshold Cohen proposed for a small effect (0.1 < q < 0.3).189

Figure 3b shows correlations between power at different frequencies and (residual) recall190

performance to help illustrate the importance of different features for our regularized logistic and191

linear regression models relating brain activity to (residual) recall performance. Across all mea-192

sures of (residual) recall performance, correlations with spectral power were more negative in the α193

range (around 10 Hz) and less negative at higher and lower frequencies. The correlations between194

power and uncorrected item-level recall were positive for frequencies in the γ range (> 40 Hz)—an195

effect that was substantially reduced for all item-level residuals, except for that not correcting for196

serial position. This suggests that positive correlations between γ power and recall performance197
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Figure 4: (a) Distribution of uncorrected list-level SMEs (“list”) across all participants and of
corresponding corrected SMEs accounting for all factors or only the indicated ones (here “list #”
refers to the joint effects of both list number and average recallability of words in each list). Box-
plots are as in Figure 3. (b) Mean correlations between power at different frequencies (aggregated
across 28 superior electrodes) and the respective (residuals of) list-level recall performance across
all participants (lined up with the corresponding SMEs in Panel a). The black horizontal lines
indicate zero. Error regions indicate 95% CIs.

largely reflect serial position effects (see also Figure 2).198

Rather than statistically controlling for factors that were specific to individual items (i.e.,199

serial position and recallability), our list-level SME eliminates or severely reduces these factors by200

averaging brain activity over the encoding epochs to predict (residuals of) the proportion of recalled201

items in each list. Because each list contained the same number of items, effects of serial position202

averaged out, eliminating this factor from affecting list-level SMEs. Even though recallability203

is specific to individual items, lists could vary with respect to the average recallability of their204

constituent items. We therefore considered not only list number and session number, but also205

average recallability of items within the list as external factors to control for in our calculation of206

corrected list-level SMEs. As for our item-level SMEs, we quantify list-level SMEs by calculating207
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the correlations between predictions from L2 regularized linear regression models and (residual)208

recall performance.209

The top of Figure 4a (labeled “list”) shows the distribution of the uncorrected list-level SME210

(M = 0.26, t(96) = 18.213, SE = 0.015, p < 0.001, d = 1.849). It is tempting to compare211

the size of this list-level SME to the item-level SME shown at the top row of Figure 3a, but such212

direct comparisons are difficult to make sensibly. The EEG features driving the list-level SME213

were averaged across all study epochs within each list, whereas the item-level SME relied on214

features from individual epochs. Thus the neural features making up the item and list-level SMEs215

may differ substantially in their respective signal to noise ratios and the number of observations216

contributing to these different kinds of SMEs also differed considerably (in our case by a factor of217

24, because each list consisted of 24 items).218

To calculate corrected list-level SMEs, we fit linear regression models to predict list-level219

recall performance on the basis of average recallability of items in that list, list number, and session220

number. We then used brain activity to predict residual list-level recall performance. The second221

row of Figure 4a (labeled “list|all”) shows this corrected list-level SMEs (M = 0.22, t(96) =222

14.332, SE = 0.015, p < 0.001, d = 1.455). This effect was smaller than the uncorrected list-223

level SME (t(96) = 5.548, SE = 0.008, p < 0.001, d = 0.563), reflecting the fact that external224

factors do contribute to the uncorrected list-level SME. The fact that we could demonstrate a sizable225

corrected list-level SME, however, supports our previous result that external factors are not critical226

drivers of the SME.227
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To better understand the extent to which list and session-level external factors contribute to228

the list-level SME, we statistically controlled for average recallability of items within each list and229

list number (list-level effects; third row of Figure 4b labeled “list|list #”) and, separately, for session230

number (session-level effects; fourth row of Figure 4b labeled “list|session #”). The corresponding231

SMEs were significant (M = 0.16 and 0.32, t(96) = 12.668 and 20.132, SE = 0.013 and 0.016,232

respectively, both ps < 0.001, d = 1.286 and 2.044, respectively). Their sizes, however, fell233

outside the range spanned by the SME controlling for all external factors and the uncorrected SME.234

The SME correcting for list-level factors was smaller than that correcting for all external factors235

and the uncorrected SME (t(96) = 11.606 and 12.466, SE = 0.005 and 0.008, respectively,236

both ps < 0.001, d = 1.178 and 1.266, respectively), whereas the SME correcting for session237

was larger than both (t(96) = 13.134 and 13.950, SE = 0.009 and 0.005, respectively, both238

ps < 0.001, d = 1.333 and 1.416, respectively). This pattern confirms our previous finding that239

our measures of brain activity did not effectively capture session-level external factors that affect240

recall performance. Hence, statistically controlling for their effects enhances our ability to predict241

residual recall performance from brain activity whereas a failure to remove that variability from242

recall performance reduces the SME.243

As for the item-level SMEs, Figure 4a shows substantial overlap between the distributions244

for the uncorrected and corrected list-level SMEs. Analyses of corresponding effect sizes confirm245

that here, too, effects of external factors were small relative to the size of the SME. Specifically246

Cohen’s d for the uncorrected and corrected SMEs were 1.849 and 1.455, respectively (correspond-247

ing ds for the corrected SME considering only list or session-related factors were 1.286 and 2.044248
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respectively). The size of the difference between the uncorrected and the corrected SME was only249

about a third (d = 0.563) of the individual effects (but, d = 1.266 and 1.416 for the corrected250

SMEs only accounting for list and session-related factors, respectively). As before, we can also251

interpret the size of these effects by considering the corresponding correlations directly. From that252

perspective, the uncorrected and all corrected SMEs correspond to small effects (0.1 < r < 0.3)253

whereas the differences between the uncorrected and the corrected SME falls short of a small ef-254

fect (q = 0.047; corresponding qs for the differences with corrected SMEs considering only list or255

session-related factors were 0.1 and 0.07 respectively).256

Just as in Figure 3b, Figure 4b shows the correlations between power in different frequencies257

and (residuals of) recall performance. The qualitative pattern of these correlations aligned with the258

pattern for item-level SMEs with more negative correlations in the α range and less negative cor-259

relations at lower and higher frequencies. Positive correlations between γ power and (residuals of)260

list-level recall performance were absent, supporting our previous interpretation that these positive261

correlations in item-level SMEs are largely driven by serial position effects (which are averaged262

out in the list-level analyses).263

The presence of a robust list-level SME is compatible with endogenous factors that vary264

slowly (over many seconds or minutes) rather than with the presentation of individual items during265

the study list. Indeed, to the extent that factors driving the SME are closely linked to the pre-266

sentation of individual items, characterizing these factors as “endogenous” would be problematic.267

To investigate the extent to which factors predicting subsequent recall are tied to individual items268
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Figure 5: Distribution of uncorrected list-level SMEs (“list”) across all participants for synthesized
lists made up from randomly selected items within a session (see methods for details) and of
corresponding corrected SMEs accounting for all factors or only the indicated ones (here “list
#” refers to the joint effects of both list number and average recallability of words in each list).
Boxplots are as in Figures 3 and 4.

rather than varying more slowly over the study periods we constructed shuffled lists that mirrored269

the distribution of recall performance, but synthesized lists from randomly selected items within270

each session. Figure 5 shows the list-level SMEs for these shuffled lists. As is evident from the271

Figure, this shuffling procedure practically eliminated the SME. High statistical power resulted272

in statistically significant deviations from zero, but the largest shuffled SME corresponded to a273

mean correlation of 0.03 with the residual recall performance after accounting for session effects274

which was an order of magnitude smaller than the corresponding unshuffled SME. All shuffled275

SMEs were significantly smaller than the corresponding unshuffled ones (t(96) = 14.286–20.361,276

SE = 0.013–0.016, ps < 0.001, d = 1.450–2.067), supporting our previous result that (slowly277

varying) endogenous factors (rather than item-specific, or otherwise external, factors) are the main278

drivers of the SME.279
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Discussion280

The subsequent memory analysis of neural data has provided researchers with a powerful tool281

for uncovering the brain mechanisms that underlie successful memory formation. Armed with282

this methodology, cognitive neuroscientists have conducted hundreds of experiments, using a wide283

range of recording techniques, seeking to elucidate the brain signals and networks that accom-284

pany memory acquisition. Yet, despite an impressive body of data amassed in recent decades, key285

questions about the neural correlates of memory acquisition remain unanswered. Specifically, to286

what extent do these neural correlates reflect known external factors that determine memorability,287

or endogenously varying brain states that determine the efficiency of memory acquisition? Prior288

research suggests that both external and endogenous factors play a role: On the one hand, experi-289

mental manipulations of item encoding affect the SME,5, 27, 28 suggesting a role for external factors.290

On the other hand, neural activity prior to item onset predicts subsequent memory, suggesting a291

role for endogenous factors unrelated to item processing.5, 20–23 We approached this question by292

examining how the SME changed after statistically controlling for a comprehensive set of external293

factors. We also sought to to remove effects of item-specific external factors by aggregating brain294

activity over the study periods of all items within a list to predict list-level recall (i.e., a list-level295

SME). Both approaches for removing the effects of external factors resulted in relatively modest296

decreases to the SME, implicating endogenous factors as the main drivers of the SME.297

Because it is impossible to perfectly control for effects of all possible external factors, distin-298

guishing between effects of external variables and endogenous processes is notoriously difficult.299
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We approached this challenge by treating serial position, list, and session number as categorical300

predictors, effectively modeling the joint effects of external factors associated with these predictors301

without having to commit to a particular functional form relating these predictors to recall perfor-302

mance. By fitting these models separately to the data from each individual, we were also able to303

accommodate individual differences. Our approach attributed any variability in recall performance304

that covaried with one of our external factors to that factor, even though it is likely that some of that305

variability could reasonably be classified as “endogenous” (e.g., sessions could be administered at306

different times from day to day, and corresponding effects of circadian rhythms would have been307

classified as an external session effect). This approach to modeling external factors should yield308

a conservative estimate of the contributions of endogenous factors, despite the fact that we cannot309

completely rule out contributions of external factors to our corrected SMEs.310

Our findings of strong list-level SMEs, and their elimination when synthesizing lists of ran-311

domly selected items within a session, provide strong additional evidence against the interpretation312

that the SME reflects item-level factors that influence memorability. Instead these findings suggest313

that relevant endogenous factors vary at the time scale of entire list presentations. Averaging brain314

activity across encoding periods within a list thus yields a signal that is strongly predictive of list-315

level recall performance, because items that are studied together are studied in similar “cognitive316

states.” These findings raise the questions about the nature of the relevant endogenous factors pro-317

ducing these states. The prominent negative correlation between recall performance and α power318

(shown in Figures 1c, 3b, and 4b) could suggest that the endogenous factors that drive the SMEs319

reflect attentional engagement during memory encoding.29 According to this interpretation, SMEs320
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would not specifically index mnemonic encoding processes and should generalize to other tasks321

without memory tests. Further work is required to establish the extent to which SMEs reflect322

general attentional processes or specifically relate to successful memory encoding. Within the323

multivariate approach introduced here, this question could be addressed by contrasting decoding324

and cross-decoding performance of multivariate models applied to different tasks.25
325

Because SMEs have been demonstrated in tasks other than free recall, and for various mea-326

sures of brain activity,3, 30–32 future work will need to address the question of how endogenous327

neural variation underlies memory encoding outside of our experimental setting. The fact that sub-328

stantial SMEs remained after accounting for a comprehensive set of external variables may appear329

in conflict with findings that encoding task manipulations can affect the specific form of SMEs,330

at least for recognition memory.5, 27, 28, 33, 34 Here we show that in the absence of direct manipula-331

tions of how study items are presented or processed, SMEs mainly reflect endogenous factors with332

relatively modest contributions from external factors, at least for EEG activity in a free recall task.333

Our findings align with reports of sequential dependencies in human performance4, 10–12 as334

well as with those of slow endogenous neural fluctuations that drive variability in evoked brain ac-335

tivity and overt behavior.13–19. Previous investigations of endogenous variability in neural activity336

and performance have relied on exact repetitions of stimuli across many experimental trials to limit337

variability in external factors. To study the effects of endogenous variability on recall performance,338

we took a complementary approach by statistically removing the effects of a comprehensive set of339

external factors. Despite the differences in methodologies and tasks, the conclusions are remark-340
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ably consistent in establishing an important role for slowly varying fluctuations in neural activity341

as drivers of variability in human cognition.342

Because encoding and retrieval processes jointly determine mnemonic success, it is noto-343

riously difficult to study either process in isolation. The assessment of encoding-related brain344

activity as a function of subsequent memory performance offers a powerful tool for isolating neu-345

ral processes specifically underlying memory formation. As typically used, however, this method346

conflates external factors that predict subsequent memory (e.g., item complexity) and endoge-347

nously varying neural processes. Here we used two new methods to deconfound these factors:348

First, we used a statistical model to control for external factors and examined the SME on residual349

performance measures. Second, we introduced a new list-level SME and a session-level resam-350

pling control procedure that identifies encoding-related neural activity that varies at the time-scale351

of entire list presentations. Both approaches showed that endogenous neural activity dominates352

the subsequent memory effect, highlighting its effectiveness for the study of cognitive processes353

associated with memory acquisition.354

Methods355

Participants We analyzed data from 97 young adults (18–35) who completed at least 20 sessions356

in Experiment 4 of the Penn Electrophysiology of Encoding and Retrieval Study (PEERS) in ex-357

change for monetary compensation. This study was approved by the Institutional Review Board358

at the University of Pennsylvania and we obtained informed consent from all participants. Recall359

performance for a large subset of the current data set was previously reported,4 but this is the first360
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report of electrophysiological data from this experiment. Data from PEERS experiments are freely361

available at http://memory.psych.upenn.edu and have been reported in several previous362

publications.35–42 Our analyses included data from all participants with at least 20 sessions.363

Experimental task Each of up to 23 experimental sessions consisted of 24 study lists that each364

were followed by a delayed free recall test. Specifically, each study list presented 24 session-365

unique English words sequentially for 1,600 ms each with a blank inter-stimulus interval that was366

randomly jittered (following a uniform distribution) between 800 and 1,200 ms. After the last367

word in each list, participants were asked to solve a series of arithmetic problems of the form368

A+B+C =? where, A, B, and C were integers in [1, 9]. Participants responded to each problem369

by typing the result and were rewarded with a monetary bonus for each correctly solved equation.370

These arithmetic problems were displayed until 24 s had elapsed and were then followed by a blank371

screen randomly jittered (following a uniform distribution) to last between 1,200 and 1,400 ms.372

Following this delay, a row of asterisks and a tone signaled the beginning of a 75 s free recall373

period. A random half of the study lists (except for the first list in each session) were also preceded374

by the same arithmetic distractor task which was separated from the first study-item presentation375

by a random delay jittered (following a uniform distribution) to last between 800 and 1,200 ms.376

Each session was partitioned into 3 blocks of 8 lists each and blocks were separated by short377

(approximately 5 min) breaks. At each session participants were asked to rate their alertness and378

indicate the number of hours they had slept in the previous night.379

Stimuli Across all lists in each session the same 576 common English words (24 words in each of380

24 lists) were presented for study, but their arrangement into lists differed from session to session381
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(subject to constraints on semantic similarity35). These 576 words were selected from a larger382

word pool (comprising 1,638 words) used in other PEERS experiments. The 576-word subset383

of this pool used in the current experiment is included as supplementary material and ranged in384

arousal (2.24–7.45, M = 4.04) and valence (1.71–8.05, M = 5.52) according to independent385

ratings on these dimensions on scales between 1 and 9.43 Many participants also returned for a386

24th session that used words from the entire 1,638-word pool, but we are not reporting data from387

that session here. We estimated the mean recallability of items in a list from the proportion of388

times each word within the list was recalled by other participants in this study.389

EEG data collection and processing Electroencephalogram (EEG) data were recorded with ei-390

ther a 129 channel Geodesic Sensor net using the Netstation acquisition environment (Electrical391

Geodesics, Inc.; EGI) or with a 128 channel Biosemi Active Two system. EEG recordings were392

re-referenced offline to the average reference. Because our regression models weighted neural fea-393

tures with respect to their ability to predict (residuals of) recall performance in held out sessions,394

we did not try to separately eliminate artifacts in our EEG data. Data from each participant were395

recorded with the same EEG system throughout all sessions and for those sessions recorded with396

the Geodesic Sensor net, we excluded 26 electrodes that were placed on the face and neck, rather397

than the scalp, from further analyses. For the visualization of EEG activity in the figures, we ag-398

gregated over electrodes 4, 5, 12, 13, 19, 20, 24, 28, 29, 37, 42, 52, 53, 54, 60, 61, 78, 79, 85,399

86, 87, 92, 93, 111, 112, 117, 118, and 124 for the EGI system and electrodes A5, A6, A7, A18,400

A31, A32, B2, B3, B4, B18, B19, B31, B32, C2, C3, C4, C11, C12, C24, C25, D2, D3, D4, D12,401

D13, D16, D17, and D28 for the Biosemi system. These correspond to the superior regions of402
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interest used we used previously.44 All of our classification and regression models, however, used403

measures from all individual electrodes (with the exception of those covering the face and neck404

for the EGI system) as input without any averaging across electrodes. The EGI system recorded405

data with a 0.1 Hz high-pass filter and we applied a corresponding high-pass filter to the data406

collected with the Biosemi system. We used MNE,45, 46 the Python Time-Series Analysis (PTSA)407

library (https://github.com/pennmem/ptsa_new), Sklearn47 and custom code for all408

analyses.409

We first partitioned EEG data into epochs starting 800 ms before the onset of each word410

in the study lists and ending with its offset (i.e., 1,600 ms after word onset). We also included411

an additional 1,200 ms buffer on each end of each epoch to eliminate edge effects in the wavelet412

transform. We calculated power in 15 logarithmically spaced frequencies between 2 and 200 Hz,413

applied a log-transform, and down-sampled the resulting time series of log-power values to 50 Hz.414

We then truncated each epoch to 300–1,600 ms after word onset. For the item-based models we415

used each item’s z-transformed mean power in each frequency across this 1,300 ms interval as416

features to predict (residual) subsequent recall. For the list-based regression models we averaged417

these values across all items in each list to predict (residuals of) list-level recall.418

Removing effects of external factors For the item based analyses we fit logistic regression mod-419

els separately for each participant to predict each item’s recall from its average recallability (i.e.,420

it’s average probability of recall calculated from all other participants’ recall data), its serial posi-421

tion within the study list, the list number within the current session, and the session number within422

the experiment. We treated all of these predictors, except for recallability, as categorical to accom-423
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modate any functional relationship between them and recall performance. This allowed us to use424

list and session number as predictors to model the combined effects of list and session-specific ex-425

ternal factors rather than attempting to capture each of them separately. Furthermore, fitting these426

models separately to each participant’s data allowed us to accommodate potentially idiosyncratic427

relationships between external factors and the predictors in our model as well as those between ex-428

ternal factors and recall performance. We then calculated residuals from the full model including429

all item-level predictors as well as from nested models including all but one of the predictors as de-430

scribed in the main text. Residuals from logistic regression models are constrained to fall between431

−1 and 1 (assuming the two possible outcomes are codes as 0 and 1). To make these residuals more432

similar to those from the linear regression models, we transformed the residuals to fall between 0433

and 1 (just like list-level recall probabilities) and then applied a logit-transform: rest =
(res+1)/2

1−(res+1)/2
,434

where rest and res are the transformed and untransformed residuals respectively. All references to435

residuals from logistic regression models in other parts of this paper refer to transformed residuals.436

For the list-based analyses we proceeded similarly, fitting linear regression models separately437

for each participant to predict the logit transformed probability of recall for each list (i.e., the pro-438

portion of words that were recalled in each list). We used the average recallability of words within439

each list, list number within each session, and session number within the experiment as predictors440

(treating list and session number as categorical predictors). We again calculated residuals for the441

full model and also for two nested models: one including average recallability for each list and list442

number (list-level predictors) and one only including session number (session-level predictor).443
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Item-based classifier For the item-based classifier we used a nested cross-validation procedure to444

simultaneously determine the regularization parameter and performance of L2-regularized logistic445

regression models predicting each item’s subsequent recall. We applied this nested cross-validation446

approach separately to the data from each participant to accommodate idiosyncratic relationships447

between brain activity and recall performance and inter-individual differences in signal quality.448

At the top level of the nested cross-validation procedure we held out each session once—these449

held out sessions were used to assess the performance of the models. Within the remaining ses-450

sions, we again held out each session once—these held-out sessions from within each top-level451

cross-validation fold were used to determine the optimal regularization parameter, C, for Sklearn’s452

LogisticRegression class. We fit models with 9 different C values between 0.00002 and 1 to the453

remaining sessions within each cross-validation fold and evaluated their performance as a function454

of C on the basis of the held out sessions within this fold. We then fit another logistic regression455

model using the best-performing C value to all sessions within each cross-validation fold and de-456

termined the model predictions on the sessions that were held-out at the top level. We determined457

the performance of our models solely on the basis of the predictions from these held-out sessions.458

There are many reasonable alternatives to for setting up these models. Our choice of L2 regulariza-459

tion was motivated by good performance of these models in similar data sets,25, 42 and not informed460

by the current results.461

Item and list-based regression models For the item- and list-based regression models we fol-462

lowed the same procedure as for the item-based classifier to determine the optimal level of regu-463

larization for L2 regularized linear regression models predicting residuals of item-level recall or464
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(residuals of) list-level recall performance. Specifically, we used the same nested cross-validation465

procedure described above to determine optimal values for α (corresponding to 1/C), the regular-466

ization parameter in Sklearn’s Ridge class, testing 9 values between 1 and 65536. We applied these467

models to the (logit-transformed) proportion of items recalled for each list and to the residuals from468

the various item- and list-level models as described above.469

Shuffled control lists For our list-level analyses we also computed SMEs for shuffled control lists470

to investigate the extent to which SMEs were linked to individual item properties or instead relied471

on slowly varying endogenous factors. For this approach, we separated all recalled and unrecalled472

items in each session, shuffled both sets of items separately, and then synthesized new lists with473

the original proportions of recalled and unrecalled items from the shuffled pools of recalled and474

unrecalled items. We repeated this procedure 20 times for each participant and concatenated the475

resulting shuffled lists. This shuffled session thus consisted of 20 copies of each item synthesized476

into 480 lists that matched the recall performance of the 24 original lists (the performance of each477

original list was represented 20 times in the shuffled session). We then applied all of our list-level478

SME analyses to these shuffled lists.479

Data availability Data from this experiment are freely available at http://memory.psych.480

upenn.edu.481

Code availability Data analysis code from this manuscript is freely available at http://memory.482

psych.upenn.edu.483
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