
Written by
Michelle Ufford,

SQL Developer and DBA for GoDaddy.com

Why and How You Should Find and
Fix Index Fragmentation

White Paper

WPD-FindAndFixIndexFragmentation-US-AG

© 2009 Quest Software, Inc.
ALL RIGHTS RESERVED.

This document contains proprietary information, protected by copyright. No part of
this document may be reproduced or transmitted for any purpose other than the
reader's personal use without the written permission of Quest Software, Inc.

WARRANTY

The information contained in this document is subject to change without notice.
Quest Software makes no warranty of any kind with respect to this information.
QUEST SOFTWARE SPECIFICALLY DISCLAIMS THE IMPLIED WARRANTY OF THE
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Quest Software
shall not be liable for any direct, indirect, incidental, consequential, or other
damage alleged in connection with the furnishing or use of this information.

TRADEMARKS

All trademarks and registered trademarks used in this guide are property of their
respective owners.

World Headquarters
5 Polaris Way
Aliso Viejo, CA 92656
www.quest.com
e-mail: info@quest.com

Please refer to our Web site (www.quest.com) for regional and international office
information.

Updated—July 2009

http://www.quest.com/
mailto:info@quest.com
http://www.quest.com/

i

CONTENTS

INTRODUCTION ..1
UNDERSTANDING FRAGMENTATION AND HOW SQL SERVER
STORES DATA..2

TYPES OF INDEX FRAGMENTATION... 3
An Unfragmented Index ... 3
External Fragmentation.. 3
Internal Fragmentation .. 4

HOW DOES FRAGMENTATION OCCUR? ..5
CAUSES OF EXTERNAL FRAGMENTATION.. 5
CAUSES OF INTERNAL FRAGMENTATION .. 5
MINIMIZING FRAGMENTATION ... 6

HOW TO FIND FRAGMENTATION ...7
THE SYS.DM_DB_INDEX_PHYSICAL_STATS DMF ... 7

Parameters .. 7
Columns Returned... 8

CALLING THE SYS.DM_DB_INDEX_PHYSICAL_STATS DMF... 8
Example 1: LIMITED Mode.. 8
Example 2: DETAILED Mode ... 9
Guidelines for Choosing a Mode... 10

HOW TO DEFRAG YOUR INDEXES ..11
REORGANIZE ... 11
REBUILD .. 11
BEST PRACTICES... 11
EXAMPLES... 12

Example 1: Reorganizing an Index... 12
Example 2: Rebuilding an Index ... 12
Example 3: Rebuilding a Large Index to Minimize Server Impact................. 12

FOR MORE INFORMATION... 12
CONCLUSION ..13
ABOUT THE AUTHOR ...14
ABOUT QUEST SOFTWARE, INC. ..15

CONTACTING QUEST SOFTWARE... 15
CONTACTING QUEST SUPPORT... 15

White Paper

1

INTRODUCTION

Database maintenance is a complex activity involving many components and a
variety of tasks. This paper covers just one challenging task: index maintenance.

It may help to think of a database in the context of an automobile and index
maintenance as an oil change. Cars require regular maintenance in order to run
their best; although failing to perform maintenance will not cause your car to break
down immediately, it can lead to engine trouble and expensive repairs over a long
period of time. The same is true with databases.

High-performance Formula One race cars require more care and more frequent
maintenance than their family-sedan counterparts, and so do high-volume
databases. The more data your database stores and the more transactions it
performs, the more critical regular maintenance is and the more frequently you
need to perform it.

Neglecting index maintenance can hurt a database in many ways. In particular,
index fragmentation can lead to wasted storage space, inefficient I/O, and poor
query performance. In this paper, we’ll discuss what index fragmentation is, how it
is caused, how to find it, and how to fix it.

Why and How You Should Find and Fix Index Fragmentation

UNDERSTANDING FRAGMENTATION AND HOW

SQL SERVER STORES DATA

Although there are many kinds of fragmentation, including disk and file
fragmentation, we’ll be talking about index fragmentation only. Understanding
index fragmentation requires a basic understanding of how SQL Server stores data.
SQL Server organizes the pages allocated to an index in a B-tree structure. The top
level of the B-tree is called the root node; the bottom level contains the leaf nodes.
In a clustered index, the leaf node is where the actual data resides. The
intermediate level encompasses the layers between the root and the leaf nodes.
The number of intermediate levels depends on the size of the index; a small index
might not even have an intermediate level.

Microsoft’s Books Online provides an illustration to help us visualize the basic B-tree
structure of a clustered index:

Figure 1. The basic B-tree structure of a clustered index

2

White Paper

Pages are doubly linked, as illustrated by the “previous | next” section on each
page. When searching for a single record, SQL Server navigates through the B-tree
using the index key. For a range of values, SQL Server will first use the B-tree to
navigate to the starting key value in the range, and then it’ll utilize the pointers to
scan subsequent pages.

Types of Index Fragmentation

There are two different types of index fragmentation: internal and external.

An Unfragmented Index

First consider what an unfragmented index looks like. A simplified unfragmented
index is shown in Figure 2, which is adapted from an illustration in Books Online.
Notice that, while the page numbers are not contiguous, they are ever-increasing.

Page 504
AAA
AFA
AJE

Page 505
AME
AOP
ARN

Page 527
AZE
BAB
BGA

Page 528
BIK
CAA
CAE

Page 544
CAF
DAC
DDO

Page 556
DEE
DMA
DRT

Figure 2. A simplified unfragmented index

External Fragmentation

External fragmentation occurs when the physical sequence of the index page chain
does not match the logical ordering. That is, any page that does not follow a
sequential order is fragmented. In Figure 3, the pages in green are fragmented
because the physical and logical ordering of these pages is out of sync.

Page 504
AAA
AFA
AJE

Page 612
AME
AOP
ARN

Page 527
AZE
BAB
BGA

Page 491
BIK
CAA
CAE

Page 708
CAF
DAC
DDO

Page 556
DEE
DMA
DRT

Figure 3. External fragmentation

External fragmentation can increase the amount of IO necessary to perform
ordered index scans, such as querying on a range of values, because the storage
engine reads index pages serially in key order.

3

Why and How You Should Find and Fix Index Fragmentation

Internal Fragmentation

Internal fragmentation occurs when the amount of free space on a page is not
optimal; that is, the index is consuming more space than necessary. Figure 4
demonstrates internal fragmentation: the pages highlighted in green contain fewer
rows than other pages.

Figure 4. Internal fragmentation

Free space on a page is not necessarily a problem, especially if more records will be
written to the page. However, a page that is only partially full and has little to no
chance to be written to is internally fragmented and should be addressed. For
example, consider an index that has so much internal fragmentation that it is only
50% full on average. That index will consume twice as much disk space as
necessary, which will lead to other issues. More space will be required for backups.
A single IO will return only half as many records, so SQL Server will need to
perform twice as much IO to return the same amount of data, which means queries
will take longer to execute. Therefore, correcting internal fragmentation is
important to both database performance and cost control.

4

White Paper

HOW DOES FRAGMENTATION OCCUR?

Fragmentation can occur any time a record is inserted, updated, or deleted.
Therefore, the higher the volume of your database, the greater the potential for
fragmentation and the more frequently you’ll need to maintain it.

Causes of External Fragmentation

Consider the following very simplified illustration of how external fragmentation
could occur:

Figure 5. A page split can cause external index fragmentation

Page 4 needs to be written to (to maintain ordering of the index key), but it is full.
Therefore, SQL Server has to perform a page split: a new page is allocated to the
index and approximately half the data is moved from the full page to the new page;
the forward and backward pointers of the surrounding pages are also updated.
Because the logical ordering of data no longer matches the physical ordering, we
now have external fragmentation in the index. The new page is not fragmented; the
page it points to (in this case, page 5) is fragmented, because it is the one out of
sequential order.

Causes of Internal Fragmentation

Page splits can also cause internal fragmentation, often at the same time that
external fragmentation is caused. Consider the result of the page split just
described:

Figure 6. A page split can cause internal index fragmentation

5

Why and How You Should Find and Fix Index Fragmentation

6

During the page split, SQL Server moved half of the records from Page 4 to
Page 742. The reasoning behind this behavior is that if one record needs to be
written to Page 4, additional records may be on the way. This design is generally a
good thing and improves overall write performance, especially in OLTP systems.
However, if the page being updated and split contains old data that may never be
written to again, you’re left with an excess amount of free space on the page:
internal fragmentation.

Minimizing Fragmentation

Since a single page split often results in both internal and external fragmentation, if
you have one type of fragmentation, you probably have both. Certain designs, like
clustering on a static and sequential value, can minimize the amount of
fragmentation that can occur, and therefore it is recommended that most tables
utilize a static, sequential column for a clustering key, such as an INT IDENTITY.
But while attempting to minimize fragmentation is certainly a good idea, it is
probably more important to accept that fragmentation will occur and to have a plan
in place for managing it.

White Paper

7

HOW TO FIND FRAGMENTATION

The sys.dm_db_index_physical_stats DMF

In SQL Server 2000, you may have used DBCC ShowContig to find fragmentation.
SQL Server 2005 and 2008 provides the sys.dm_db_index_physical_stats
dynamic management function (DMF), which gives more detailed information and is
easier to manipulate than its DBCC predecessor. It’s also worth mentioning that the
fragmentation algorithm has been updated in SQL Server 2008, so that
fragmentation levels may appear to be higher in newer versions. In reality, the
newer algorithm is more refined and is merely better at recognizing fragmentation
than its predecessor.

Parameters

The sys.dm_db_index_physical_stats DMF accepts five nullable parameters:

PARAMETER DESCRIPTION

database_id The ID of the database. A full list of databases and their IDs can be obtained
from the sys.databases catalog view. Optionally, the DB_ID()function can be
used (see http://msdn.microsoft.com/en-us/library/ms186274.aspx).

table_id The ID of the table. A full list of tables and their IDs can be obtained from
the sys.tables catalog view. Optionally, the OBJECT_ID()function may be
used (see http://msdn.microsoft.com/en-us/library/ms190328.aspx).

index_id The ID of the index. The following query1 can be used to find the index_id:
SELECT name, index_id, type_desc
FROM sys.indexes
WHERE object_id = OBJECT_ID('Sales.SalesOrderDetail');

partition_number The number of the partition. If you are not using partition schemes—and
most environments are not—you can set this to either NULL or 1.

mode There are three modes for this function: LIMITED, SAMPLED, and DETAILED.
• LIMITED - Scans only the parent-level pages of the index (the parent-level

page is the index page directly above the leaf level). Because it scans the fewest
pages, LIMITED mode executes faster than the other modes. However, LIMITED
mode returns the least amount of information. In particular, it returns external
fragmentation information but no internal fragmentation information. Use
LIMITED mode if you’re looking for general fragmentation information.

• SAMPLED - Scans 1% of all data pages; if there are fewer than 10,000 pages in
the index, DETAILED mode will be used instead. SAMPLED mode returns more
information than LIMITED mode, and it returns internal as well as external
fragmentation information.

1 All examples utilize the AdventureWorks sample database, which can be found at
http://msftdbprodsamples.codeplex.com/.

http://msdn.microsoft.com/en-us/library/ms186274.aspx
http://msdn.microsoft.com/en-us/library/ms190328.aspx
http://msftdbprodsamples.codeplex.com/

Why and How You Should Find and Fix Index Fragmentation

8

PARAMETER DESCRIPTION

• DETAILED - Scans all pages and provides the most complete information.
Unlike LIMITED and SAMPLED modes, which only provide estimates, DETAILED
mode returns the most accurate statistics. It also returns more rows: LIMITED
and SAMPLED modes return only a single row for each leaf node, but DETAILED
mode returns a row for every node level of the index. DETAILED mode takes the
longest to complete; you should avoid executing this mode on large tables
during business hours.

LIMITED is the recommended mode because it is the fastest to execute and
the least intrusive. Although internal fragmentation statistics are not
returned, external fragmentation statistics are typically a sufficient
indicator as to whether an index needs to be defragmented.

Columns Returned

The sys.dm_db_index_physical_stats DMF returns quite a few columns. The
following table explains the most important ones for index maintenance:

COLUMN DESCRIPTION

index_level Contains information about the node of the index. 0 is
the leaf level, and the highest index_level is the root
node; anything in between is an intermediate level.

avg_fragmentation_in_percent External fragmentation. The higher the number, the
higher the fragmentation level.

fragment_count The number of physically consecutive leaf pages. The
higher the fragment counter, the higher the level of
fragmentation.

avg_fragment_size_in_pages The number of pages in one fragment.

page_count The number of pages in the index.

avg_page_space_used_in_percent Internal fragmentation. The lower the number, the
higher the level of fragmentation.

Calling the sys.dm_db_index_physical_stats DMF

Example 1: LIMITED Mode

The sys.dm_db_index_physical_stats DMF can be called in the following manner:

SELECT *
FROM sys.dm_db_index_physical_stats
(
 DB_ID(), -- database ID
 OBJECT_ID('Sales.SalesOrderHeader'), -- table ID
 NULL, -- index ID
 NULL, -- partition ID
 'LIMITED' -- mode
)
ORDER BY index_id, index_level;

White Paper

9

Raw Results

The query above will return the fragmentation statistics for all indexes on the
Sales.SalesOrderHeader table. For ease of viewing, only a part of the results is
displayed below:

index_id index_level avg_fragmentation_in_percent fragment_count
----------- ----------- ---------------------------- --------------------
1 0 0.142857142857143 17
2 0 98.8593155893536 263
3 0 3 5
5 0 98.0582524271845 103
6 0 30 23
avg_fragment_size_in_pages page_count avg_page_space_used_in_percent
-------------------------- -------------------- ------------------------------
41.1764705882353 700 NULL
1 263 NULL
20 100 NULL
1 103 NULL
3.04347826086957 70 NULL

Understanding the Fragmentation Data

External fragmentation is indicated by the avg_fragmentation_in_percent column;
the higher the value, the worse the fragmentation. In this example, only three of the
five indexes need to be defragged (indexes 2, 5, and 6); indexes 1 and 3 do not
need to be defragged because they are less than five percent fragmented (we’ll talk
more about Microsoft’s recommendations for defragging in the next section).

Do not be alarmed if your results do not match mine; values for the database_id
and object_id columns can vary from installation to installation, and I have
deliberately increased fragmentation levels for demonstration purposes.

Notice that the avg_page_space_used_in_percent column, which is the internal
fragmentation, is NULL, because we ran the DMF in LIMITED mode; internal
fragmentation is provided only for SAMPLED and DETAILED modes.

Example 2: DETAILED Mode

Now let’s run the same query but in DETAILED mode:

SELECT *
FROM sys.dm_db_index_physical_stats
(
 DB_ID(), -- database ID
 OBJECT_ID('Sales.SalesOrderHeader'), -- table ID
 NULL, -- index ID
 NULL, -- partition ID
 'DETAILED' -- mode
);

Why and How You Should Find and Fix Index Fragmentation

10

Raw Results

index_id index_level avg_fragmentation_in_percent fragment_count
----------- ----------- ---------------------------- --------------------
1 0 0.142857142857143 17
1 1 75 4
1 2 0 1
2 0 98.8593155893536 263
2 1 0 1
3 0 3 5
3 1 0 1
5 0 98.0582524271845 103
5 1 0 1
6 0 30 23
6 1 0 1
avg_fragment_size_in_pages page_count avg_page_space_used_in_percent
-------------------------- -------------------- ------------------------------
41.1764705882353 700 99.0983197430195
1 4 28.0825302693353
1 1 0.617741536940944
1 263 33.9719915987151
1 1 81.2083024462565
20 100 97.1648134420558
1 1 33.3333333333333
1 103 41.491722263405
1 1 21.6085989621942
3.04347826086957 70 77.7242401779096
1 1 17.2720533728688

Understanding the Fragmentation Data

As explained earlier, DETAILED mode returns one row for every level of the index’s
B-tree. Most people will need to look only at the leaf node, which is indicated by an
index_level value of 0. In addition, DETAILED mode returns information about
internal as well as external fragmentation levels. As opposed to external
fragmentation values, the higher the internal fragmentation value in
avg_page_space_used_in_percent the better.

Guidelines for Choosing a Mode

You typically will not need to use DETAILED mode; a high value for external
fragmentation (avg_fragmentation_in_percent) often means a low value for
internal fragmentation (avg_page_space_used_in_percent), as illustrated in the
leaf-level results above. If you do decide to run the DMF in DETAILED mode on a
production server, you should take great care; I’ve seen an unchecked query with
all NULL parameters in DETAILED mode take down a mission-critical server.

White Paper

11

HOW TO DEFRAG YOUR INDEXES

In SQL Server 2005 and 2008, the ALTER INDEX command is used for index
defragmentation. While this command can also be used to perform many other
tasks, we’re going to look only at the two arguments available for defragmentation:
REORGANIZE and REBUILD.

Reorganize

The REORGANIZE option does just what its name suggests: it reorganizes data
within the pages to reduce fragmentation. Specifically, the process first tries to
consolidate data into fewer pages to reduce internal fragmentation. It then
attempts to move data so that the physical ordering matches the logical ordering,
which reduces external fragmentation.

Index reorganization is an online operation. This means that the table and index is
available for querying and updating during the reorganization.

Rebuild

The REBUILD option also does as its name implies: it completely rebuilds the index
by creating a new copy of the index and then dropping the old version. This process
is more thorough than reorganization but also more expensive.

Rebuilds can be performed online only in the Enterprise edition of SQL Server. In
Standard edition, an ALTER INDEX REBUILD will cause the table to become
inaccessible for querying and data updates.

Rebuilding an index may not be possible in some situations, such as if your table
contains LOBs (large objects, such as XML or VARCHAR (MAX) data types) or if your
table is partitioned and you want to only defrag a specific partition. In these cases,
you’ll need to use REORGANIZE instead.

Best Practices

Some best practices for index defragmentation include:

• For indexes between 5% and 30% fragmented, use ALTER INDEX
REORGANIZE.

• For indexes that are more than 30% fragmented, use ALTER INDEX
REBUILD WITH (ONLINE = ON). (This option is available in only Enterprise
editions of SQL Server.)

• Indexes less than 5% fragmented should not be defragged because the
cost of the operation is not worth the benefit.

Why and How You Should Find and Fix Index Fragmentation

12

For ALTER INDEX commands issued during working hours, consider using the
MAXDOP restriction. This option allows you to restrict the number of processors
allocated to the ALTER INDEX operation. The MAXDOP restriction is also a feature of
Enterprise edition and is unavailable in Standard.

Another option to consider is SORT_IN_TEMPDB. When set to ON, this option will
perform all sorting operations in the tempdb database instead of the database the
index resides in. This can sometimes improve performance, especially for large
index creations and rebuilds.

Small indexes—especially those with less than eight pages—may show high levels
of fragmentation even after an ALTER INDEX REBUILD or a REORGANIZE. This is
actually very common and is not cause for worry.

Examples

Example 1: Reorganizing an Index

ALTER INDEX PK_Employee_EmployeeID
 ON HumanResources.Employee
 REORGANIZE;

Example 2: Rebuilding an Index

ALTER INDEX PK_SalesOrderHeader_SalesOrderID
 ON Sales.SalesOrderHeader
 REBUILD
 WITH (ONLINE = ON);

Example 3: Rebuilding a Large Index to Minimize Server
Impact

ALTER INDEX PK_SalesOrderHeader_SalesOrderID
 ON Sales.SalesOrderHeader
 REBUILD
 WITH (ONLINE = ON,
 MAXDOP = 1,
 SORT_IN_TEMPDB = ON);

For More Information

Index defragmentation is a complex operation, and this paper provides only a
rather simple overview. If you’re interested in obtaining a better understanding of
the process, I highly recommend you pick up a copy of Microsoft SQL Server 2008
Internals.

White Paper

13

CONCLUSION

Index maintenance is an important part of database maintenance. Neglecting
indexes will eventually lead to high levels of fragmentation, both internal and
external, that can in turn cause a myriad of problems, including wasted storage
space in your database, SAN, and backups; wasted IO to retrieve multiple rows of
data; and slower queries and backups. Fragmentation can have an especially
negative impact on business reporting systems, where range scans are more
frequently performed. Regular index maintenance in SQL Server can improve the
health and performance of your databases, servers, and file storage systems.

Why and How You Should Find and Fix Index Fragmentation

14

ABOUT THE AUTHOR

Michelle Ufford is a SQL developer and DBA for GoDaddy.com,
where she works with high-volume, mission-critical databases. She
has more than a decade of experience in a variety of technical roles
and has worked with SQL Server for the last five years. She enjoys
performance tuning and maintains an active SQL Server blog. In
addition, Michelle is a regular contributor to SQLServerPedia.com.

Her online presence includes:

• SQLServerPedia Profile: Sqlfool

• Blog: http://sqlfool.com/

• Twitter: http://twitter.com/sqlfool/

http://sqlserverpedia.com/wiki/User:Sqlfool
http://sqlfool.com/
http://twitter.com/sqlfool/

White Paper

15

ABOUT QUEST SOFTWARE, INC.

Quest Software, Inc., a leading enterprise systems management vendor, delivers
innovative products that help organizations get more performance and productivity
from their applications, databases, Windows infrastructure and virtual
environments. Through a deep expertise in IT operations and a continued focus on
what works best, Quest helps more than 100,000 customers worldwide meet higher
expectations for enterprise IT. Quest Software helps organizations deliver, manage
and control complex database environments through award-winning products for
Oracle, SQL Server, IBM DB2, Sybase and MySQL. Quest Software can be found in
offices around the globe and at www.quest.com.

Contacting Quest Software

Phone: 949.754.8000 (United States and Canada)

Email: info@quest.com

Mail: Quest Software, Inc.
 World Headquarters
 5 Polaris Way
 Aliso Viejo, CA 92656
 USA

Web site: www.quest.com

Please refer to our Web site for regional and international office information.

Contacting Quest Support

Quest Support is available to customers who have a trial version of a Quest product
or who have purchased a commercial version and have a valid maintenance
contract. Quest Support provides around the clock coverage with SupportLink, our
web self-service. Visit SupportLink at http://support.quest.com

From SupportLink, you can do the following:

• Quickly find thousands of solutions (Knowledgebase articles/documents).

• Download patches and upgrades.

• Seek help from a Support engineer.

• Log and update your case, and check its status.

View the Global Support Guide for a detailed explanation of support programs,
online services, contact information, and policy and procedures. The guide is
available at: http://support.quest.com/pdfs/Global Support Guide.pdf

http://www.quest.com/
mailto:info@quest.com
http://www.quest.com/
http://support.quest.com/
http://support.quest.com/pdfs/Global%20Support%20Guide.pdf

	Why and How You Should Find and Fix Index Fragmentation
	Contents
	Introduction
	Understanding Fragmentation and How SQL Server Stores Data
	Types of Index Fragmentation
	An Unfragmented Index
	External Fragmentation
	Internal Fragmentation

	How Does Fragmentation Occur?
	Causes of External Fragmentation
	Causes of Internal Fragmentation
	Minimizing Fragmentation

	How to Find Fragmentation
	The sys.dm_db_index_physical_stats DMF
	Parameters
	Columns Returned

	Calling the sys.dm_db_index_physical_stats DMF
	Example 1: LIMITED Mode
	Example 2: DETAILED Mode
	Guidelines for Choosing a Mode

	How to Defrag Your Indexes
	Reorganize
	Rebuild
	Best Practices
	Examples
	Example 1: Reorganizing an Index
	Example 2: Rebuilding an Index
	Example 3: Rebuilding a Large Index to Minimize Server Impact

	For More Information

	Conclusion
	About the Author
	About Quest Software, Inc.
	Contacting Quest Software
	Contacting Quest Support

