

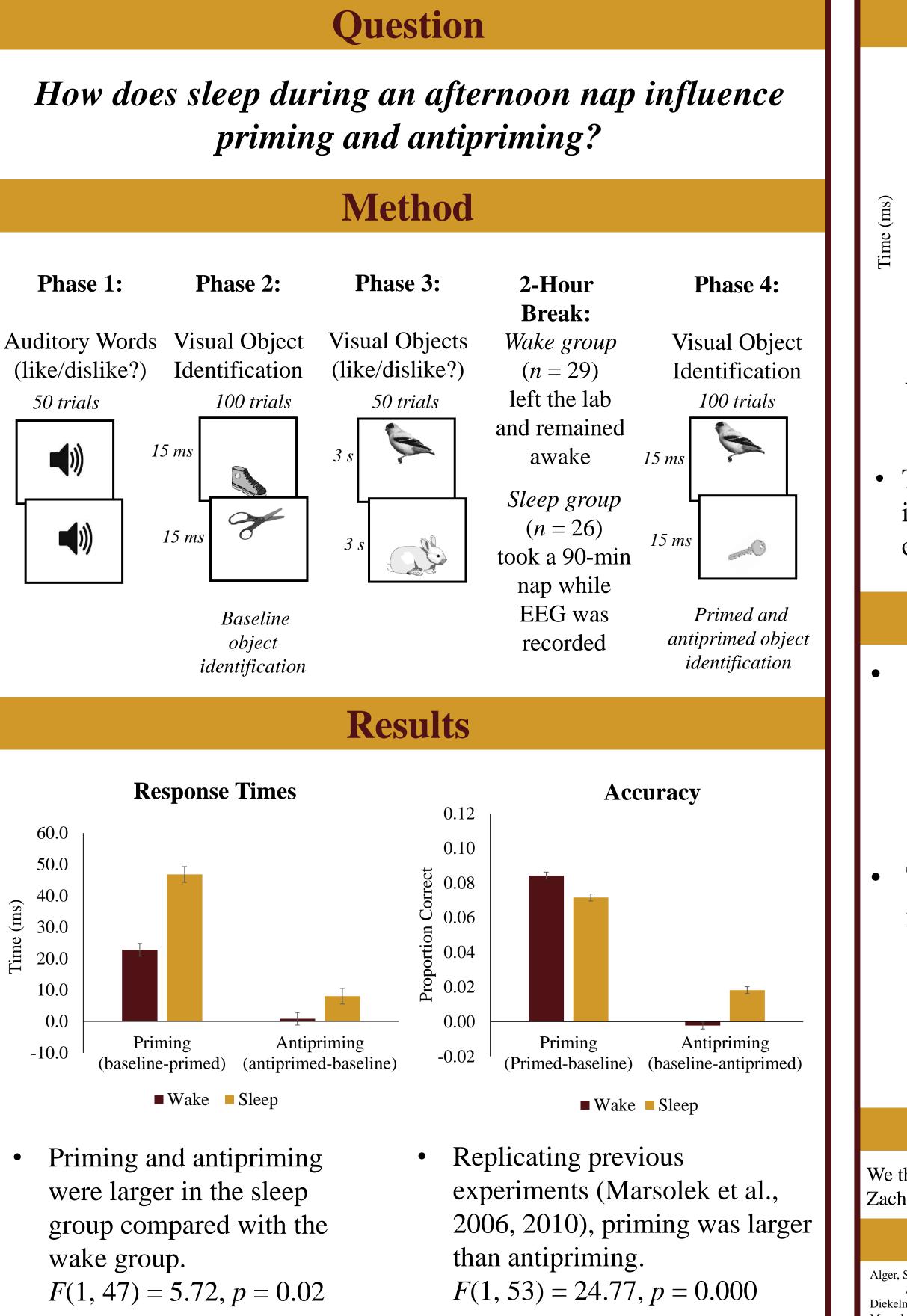
Anna B. Madden-Rusnak,¹ Rebecca G. Deason,¹ Chad J. Marsolek,² and Carmen E. Westerberg¹ ¹Department of Psychology, Texas State University ²Department of Psychology, University of Minnesota

The rising STAR of Texas

Introduction

Visual Priming and Antipriming

Priming refers to facilitated processing of an object due to previous processing of that object.


Antipriming refers to impaired processing of an object due to previous processing of a different object.

Antipriming typically co-occurs with priming in visual object recognition (Marsolek et al., 2006, 2010).

Sleep-Dependent Memory Consolidation

- Recently encoded information is stabilized and strengthened for long-term storage during sleep.
 - This can include the re-organization of information across widespread brain areas (systems-level) and synaptic strengthening within circumscribed areas (synaptic-level).
- Priming and antipriming may especially benefit from synaptic consolidation during REM sleep.
 - Previous experiments show enhanced priming after REM-rich sleep periods (Plihal & Born, 1999; Wagner et al., 2002).
 - Neural events during REM may support synapticlevel consolidation (Diekelmann & Born, 2010).
 - The influence of sleep on antipriming has not been previously assessed.

An Afternoon Nap Enhances Repetition Priming and Antipriming

• No accuracy group difference. F(1, 53) = 0.11, p = 0.75

UNIVERSITY of Minnesota

Response Times for Sleep Group 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 Priming Antipriming -10.0 (baseline-primed) (antiprimed-baseline)

■ No-REM Group ■ REM Group

• Priming and antipriming did not differ between participants who achieved REM sleep during the nap (REM group, n = 9) and those who did not (No-REM group, *n* = 15).

• Total sleep time, time spent in non-REM sleep, and time spent in REM sleep did not predict the size of priming or antipriming effects (all *r* values < 0.4)

Results

Conclusions

Sleep during an afternoon nap enhances priming and antipriming.

These results extend previous findings of priming enhancements after nocturnal sleep (Plihal & Born, 1999; Wagner et al., 2002).

The presence of REM sleep during an afternoon nap did not mediate the sleep-related enhancements in priming and antipriming.

• Daytime and nocturnal sleep may contribute to memory consolidation in different ways (Alger, Kensinger, & Payne, 2018).

Acknowledgments

We thank Omalys Torres Rodrigues, Henry Blanton, Haleigh Winfrey, Patience Kelly, and Zachary Guram for their help with data collection.

References

Alger, S. E., Kensinger, E. A., & Payne, J. D. (2018). Preferential consolidation of emotionally salient information during a nap is preserved in middle age. Neurobiology of Aging, 68, 34-47.

Diekelmann, S., & Born, J. (2010). The memory function of sleep. Nature Reviews Neuroscience, 11, 114-126.

Marsolek, C. J., Deason, R. G., Ketz, N. A., Ramanathan, P., Bernat, E. M., Steele, V. R., Patrick, C. J., Verfaellie, M., & Schnyer, D. M. (2010). Identifying objects impairs knowledge of other objects: A relearning explanation for the neural repetition effect. NeuroImage, 49, 1919-1932. Marsolek, C.J., Schnyer, D.M., Deason, R.G., Ritchey, M., & Verfaellie, M. (2006). Visual antipriming: Evidence for ongoing adjustments of superimposed visual object representations. Cognitive, Affective, and Behavioral Neuroscience, 6, 163-174.

Plihal, W., & Born, J. (1999). Effects of early and late nocturnal sleep on priming and spatial memory. Psychophysiology 36. 571-582.

Wagner, U., Hallschmid, M., Verleger, R., & Born, J. (2002). Signs of REM sleep dependent enhancement of implicit face memory: a repetition priming study. Biological Psychology, 62, 197-210.