
WHITE PAPER

Written by

Kevin Kline
Technical Strategy Manager for SQL Server Solutions

Quest Software

Top 10 Tips for Optimizing
SQL Server Performance

 Top 10 Tips for Optimizing SQL Server Performance 1

Contents
Introduction ... 2	

10. What Problem Are We Trying to Solve ... 3	

What Are Baselining and Benchmarking? ... 3	

What Baselining Can’t Do .. 4	

9. Performance Counters – How to Cut to the Chase .. 6	

Operational Monitoring ... 6	

Bottleneck Monitoring .. 6	

8. Why Changing Sp_Configure Settings Probably Won’t Help ... 8	

7. I Have a Bottleneck – What Do I Do Now? ... 9	

6. SQL Profiler Is Your Friend .. 11	

Start a Trace .. 11	

5. Zen and the Art of Negotiating with Your SAN Administrator .. 15	

4. The Horror of Cursors (and Other Bad T-SQL) .. 17	

3. Plan Reuse – Recycling for SQL .. 19	

2. The Mystery of the Buffer Cache .. 21	

1. The Tao of Indexes ... 23	

sys.dm_db_index_operational_stats .. 23	

sys.dm_db_index_usage_stats .. 24	

Conclusion .. 25	

About the Author ... 26	

 Top 10 Tips for Optimizing SQL Server Performance 2

Introduction
Performance optimization on SQL Server is difficult. A vast array of information exists on how to address
performance problems in general. However, there is not much detailed information on specific issues and even less
information on how to apply that specific knowledge to your own environment.

In this white paper, I’ll discuss the 10 things I think you should know about SQL Server performance. Each item is a
nugget of practical knowledge that you can immediately apply to your environment.

 Top 10 Tips for Optimizing SQL Server Performance 3

10. What Problem Are We Trying to
Solve
The problem is a simple one: How do you get the most value from your SQL Server deployments? Faced with this
problem, many of us ask: Am I getting the best efficiency? Will my application scale?

A scalable system is one in which the demands on the database server increase in a predictable and reasonable
manner. For instance, doubling the transaction rate might cause a doubling in demand on the database server, but a
quadrupling of demand could well result in the system failing to cope.

Increasing the efficiency of database servers frees up system resources for other tasks, such as business reports or
ad-hoc queries. To get the most from your organization’s hardware investment, you need to ensure the SQL or
application workload running on the database servers is executing as quickly and efficiently as possible.

There are a number of business issues that relate to performance optimization, including:

• Tuning to meet service level agreement (SLA) targets

• Tuning to improve efficiency, thereby freeing up resources for other purposes

• Tuning to ensure scalability, thereby helping to maintain SLAs in the future

Performance optimization is an ongoing process. For instance, when you tune for SLA targets, you can be “finished.”
However, if you are tuning to improve efficiency or to ensure scalability, your work is never really finished. This tuning
should be continued until the performance is “good enough.” In the future, when the performance of the application is
no longer good enough, this tuning should be performed again.

Good enough is usually defined by business imperatives, such as SLAs or system throughput requirements. Beyond
these requirements, you should be motivated to maximize the scalability and efficiency of all database servers —
even if business requirements are currently being met.

As stated in the introduction, performance optimization on SQL Server is challenging. There is a wealth of
generalized information on various data points available, e.g., performance counters, dynamic management views
(DMVs), and others, but there is very little information on what to do with this data and how to interpret it. This paper
describes 10 tips that will be useful in the trenches, allowing you to turn some of this data into actionable information.

What Are Baselining and Benchmarking?
Baselining and benchmarking give you a picture of resource consumption over time. If your application has not yet
been deployed into production, you need to run a simulation. This can be achieved by:

• Observing the application in real time in a test environment

• Playing back a recording of the application executing in real time

The best outcome is achieved by observing actual workload in real time or playing back a recording of a real time
simulation.

Ideally, you would also want to run the workload on hardware comparable to what the application will be deployed on
and with “realistic” data volumes. SQL statements that deliver good performance on small tables often degrade
dramatically as data volumes increase. The resulting data can then be plotted to easily identify trends.

The practical upshot is that you can evaluate future behavior against a baseline to determine whether resource
consumption has improved or worsened over time.

 Top 10 Tips for Optimizing SQL Server Performance 4

What Baselining Can’t Do
Baselining is not the only tool in your performance optimization toolbox. To explain what baselining and
benchmarking can’t do, let’s use the ubiquitous car analogy and talk about fuel consumption. The performance
counter we are going to sample is obviously a fuel gauge.

For the period of a few days, we will sample the level of the fuel in the fuel tank and plot it in a graph shown below.

The plot displays the fuel remaining in the fuel tank over time. We can see that the baseline behavior represents the
level of fuel in the tank that decreases slowly at first and then starts to accelerate more quickly toward the end of the
measured time period. In general, this is the normal behavior for fuel in a fuel tank over time.

 Top 10 Tips for Optimizing SQL Server Performance 5

Assuming this graph represents normal behavior, we can measure and plot a different behavior and compare the two
graphs. We would easily see the change in behavior. Emerging trends may also be easily identified since we can plot
against time.

A baseline cannot, however, provide any qualitative measure of efficiency. From the chart above, you cannot draw
any conclusions about how efficient the car is — you must investigate elsewhere for this information. The baseline
can tell you only whether you used more (or less) fuel between two days.

Similarly for SQL Server, a baseline can tell you only that something is outside that range of normally observed
behavior. It cannot tell you whether the server is running as efficiently as possible.

The point is that you should not start with baselining. You need to make sure that your application workload is running
as efficiently as possible. Once performance has been optimized, you can then take a baseline. Also, you cannot
simply stop with baselining. You should keep your application running as efficiently as possible and use your baseline
as an early warning system that can alert you when performance starts to degrade.

 Top 10 Tips for Optimizing SQL Server Performance 6

9. Performance Counters – How to Cut
to the Chase
A very common question related to SQL Server performance optimization is: What counters should I monitor? In
terms of managing SQL Server, there are two broad reasons for monitoring performance counters:

1. Increasing operational efficiency

2. Preventing bottlenecks

Although they have some overlap, these two reasons allow you to easily choose a number of data points to monitor.

Operational Monitoring
Operational monitoring checks for general resource usage. It helps answer questions like:

• Is the server about to run out of resources like CPU, disk space, or memory?

• Are the data files able to grow?

• Do fixed-size data files have enough free space for data?

You could also collect data for trending purposes. A good example would be collecting the sizes of all the data files.
From this information, you could trend the data file growth rates. This would allow you to more easily forecast the
resource requirements you may have in the future.

To answer the three questions posed above, you should look at the following counters:

Bottleneck Monitoring
Bottleneck monitoring focuses more on performance-related matters. The data you collect helps answer questions
such as:

• Is there a CPU bottleneck?

• Is there an I/O bottleneck?

• Are the major SQL Server subsystems, such as the Buffer Cache and Procedure Cache, healthy?

• Do we have contention in the database?

To answer these questions, we would look at the following counters:

 Top 10 Tips for Optimizing SQL Server Performance 7

 Top 10 Tips for Optimizing SQL Server Performance 8

8. Why Changing Sp_Configure
Settings Probably Won’t Help
SQL Server is not like other databases. Very few switches and knobs are available to tweak performance. There are
certainly no magic silver bullets to solve performance problems simply by changing an sp_configure setting.

It is generally best to leave the sp_configure settings at their defaults, thereby letting SQL Server manage things.
Your time is best spent looking at performance from a workload perspective, such as database design, application
interaction, and indexing issues.

Let’s look at a workload example of a setting and see why it is generally best to leave things alone.

The “max worker threads” setting is used to govern how many threads SQL Server will use. The default value (in SQL
Server 2005 on commodity hardware) is 256 worker threads.

This does not mean that SQL Server can have only 256 connections. On the contrary, SQL Server can service
thousands of connections using up to the maximum number of worker threads.

If you were responsible for a SQL Server that regularly had 300 users connected, you might be tempted to raise the
maximum number of worker threads to 300. You might think that having one thread per user would result in better
performance. This is incorrect. Raising this number to 300 does two things:

1. Increases the amount of memory that SQL Server uses. Even worse, it decreases the amount of memory that SQL
Server can use for buffer cache, because each thread needs a stack.

2. Increases the context switching overhead that exists in all multithreaded software.

In all likelihood, raising the maximum number of worker threads to 300 made things worse. It also pays to remember
that even in a four-processor box, there can only be four threads running at any given time. Unless you are directed
to do so by Microsoft support, it is best to focus your efforts on index tuning and resolving application contention
issues.

 Top 10 Tips for Optimizing SQL Server Performance 9

7. I Have a Bottleneck – What Do I Do
Now?
Once you have identified a bottleneck and worked out that it is best to leave the sp_configure settings alone, you
need to find the workload that is causing the bottleneck.

This is a lot easier to do in SQL Server 2005. Users of SQL Server 2000 will have to be content with using Profiler or
Trace (more on that in the next section).

 In SQL Server 2008 R2, if you identified a CPU bottleneck, the first thing that you would want to do is get the top
CPU consumers on the server. This is a very simple query on sys.dm_exec_query_stats:

SELECT

 TOP 50

 qs.total_worker_time / execution_count AS avg_worker_time,

 substring(

 st.text,

 (qs.statement_start_offset / 2) + 1,

 ((CASE qs.statement_end_offset

 WHEN -1 THEN datalength(st.text)

 ELSE qs.statement_end_offset

 END -

 qs.statement_start_offset) / 2) + 1)

 AS statement_text,

 *

FROM

 sys.dm_exec_query_stats AS qs

 CROSS APPLY

 sys.dm_exec_sql_text(qs.sql_handle) AS st

ORDER BY

 avg_worker_time DESC

The really useful part of this query is your ability to use cross apply and sys.dm_exec_sql_text to get the SQL
statement, so you can analyze it.

 Top 10 Tips for Optimizing SQL Server Performance 10

It is a similar story for an I/O bottleneck:

SELECT

 TOP 50

 (total_logical_reads + total_logical_writes) AS total_logical_io,

 (total_logical_reads / execution_count) AS avg_logical_reads,

 (total_logical_writes / execution_count) AS avg_logical_writes,

 (total_physical_reads / execution_count) AS avg_phys_reads,

 substring(

 st.text,

 (qs.statement_start_offset / 2) + 1,

 ((CASE qs.statement_end_offset

 WHEN -1 THEN datalength(st.text)

 ELSE qs.statement_end_offset

 END -

 qs.statement_start_offset) / 2) + 1)

 AS statement_text,

 *

FROM

 sys.dm_exec_query_stats AS qs

 CROSS APPLY

 sys.dm_exec_sql_text(qs.sql_handle) AS st

ORDER BY

 total_logical_io DESC

 Top 10 Tips for Optimizing SQL Server Performance 11

6. SQL Profiler Is Your Friend
In the following step, I use Profiler Traces from a remote machine. There is nothing to stop you from using server side
traces instead. The important part is what you do with the raw data once it gets into a database table.

Start a Trace
The goal is to classify workload, so I have chosen these four SQL-related events:

• RPC:Completed

• SP:Completed

• SQL:BatchCompleted

• SQL:StmtCompleted

Figure 1 shows the Trace Properties Dialog. I have also chosen all possible columns for each of these event types.

[Figure 1.]

 Top 10 Tips for Optimizing SQL Server Performance 12

Figure 2 shows the General tab in the same dialog. I have configured the trace to store into a table on a server other
than the server I am tracing. I have also configured the trace to stop after an hour.

[Figure 2.]

Once the trace is finished, the data should now be available in the database table that I configured. For those who
wish to use server side tracing, we will also assume from this point that the trace data now exists in a table.

On a server with a large amount of throughput, there will be a large number of rows in the trace table. In order to
make sense of all this data, it will be necessary to aggregate. I suggest aggregating by at least the SQL text or
TextData column. You can include other columns in your aggregation, such as user or client host name, but for now I
will concentrate on TextData.

TextData is a text column, which means I can’t do a GROUP BY on it. So I will convert it to something we can do a
GROUP BY on. In order to do this, I will create a column on the trace table called TextDataTrunc. Figure 3 illustrates
the populating of this column with a simple UPDATE.

To	 get	 a	 more	 accurate	 aggregation,	 it	 would	 be	 better	 to	 process	 the	 TextData	
column	 and	 replace	 the	 parameters	 and	 literals	 with	 some	 token	 that	 allows	 the	
SQL	 statements	 to	 be	 hashed.	 The	 hash	 could	 then	 be	 stored,	 and	 the	 aggregation	
could	 be	 performed	 on	 the	 hash	 value.	 This	 could	 be	 done	 with	 a	 C#	 user-‐defined	
function	 on	 SQL	 Server	 2005.	 Illustrating	 how	 to	 do	 this	 is	 beyond	 the	 scope	 of	 this	
paper,	 so	 I	 am	 using	 the	 quick	 and	 dirty	 method.	 	

 Top 10 Tips for Optimizing SQL Server Performance 13

[Figure 3.]

Once the UPDATE is complete, I can query the table to get the data we require. For example, say you wanted to
know the SQL that had been executed the most — I could use a simple query:

SELECT

 TextDataTrunc,

 COUNT(TextDataTrunc) AS ExecCount,

 SUM(cpu) AS TotalCPU

 Avg(cpu) AS AvgCPU

 FROM dbo.tracedata

 WHERE EventClass = 12

 GROUP BY TextDataTrunc

 ORDER BY ExecCount DESC

Figure 4 shows an example of this:

 Top 10 Tips for Optimizing SQL Server Performance 14

[Figure 4.]

The values to use for the EventClass column can be found in SQL Server books online under the topic
sp_trace_setevent.

 Top 10 Tips for Optimizing SQL Server Performance 15

5. Zen and the Art of Negotiating with
Your SAN Administrator
Storage area networks (SANs) are fantastic. They offer the ability to provision and manage storage in a simple way.

Even though SANs can be configured for fast performance from a SQL Server perspective, they often aren’t.
Organizations usually implement SANs for reasons such as storage consolidation and ease of management — not
for performance. To make matters worse, generally, you do not have direct control over how the provisioning is done
on a SAN. Thus, you will often find that the SAN has been configured for one logical volume where you have to put all
the data files.

Having all the files on a single volume is generally not a good idea if you want the best I/O performance. As an
alternative, you will want to:

• Place log files on their own volume, separate from data files. Log files are almost exclusively written and not read.
So you would want to configure for fast write performance.

• Place tempdb on its own volume. tempdb is used for myriad purposes by SQL Server internally, so having it on its
own I/O subsystem will help. To further fine tune performance, you will first need some stats.

There are, of course, the Windows disk counters, which will give you a picture of what Windows thinks is happening.
(Don’t forget to adjust raw numbers based on RAID configuration.) Also, SAN vendors often have their own
performance data available. SQL Server also has file level I/O information available in the form of a function
fn_virtualfilestats. From this function, you can:

• Derive I/O rates for both reads and writes

• Get I/O throughput

• Get average time per I/O

• Look at I/O wait times

Figure 5 shows the output of a query using this function ordered by IoStallMS, which is the amount of time users had
to wait for I/O to complete on a file.

 Top 10 Tips for Optimizing SQL Server Performance 16

[Figure 5.]

Using these numbers, you can quickly narrow down which files are responsible for consuming I/O bandwidth and ask
questions such as:

• Is this I/O necessary? Am I missing an index?

• Is it one table or index in a file that is responsible? Can I put this index or table in another file on another volume?

 Top 10 Tips for Optimizing SQL Server Performance 17

4. The Horror of Cursors (and Other
Bad T-SQL)
There is a blog I read every day: www.thedailywtf.com — wtf stands for Worse Than Failure, of course. Readers post
real experiences they had with bad organizations, processes, people, and code. In it, I found this gem:

DECLARE

 PatientConfirmRec CURSOR FOR

 SELECT

 ConfirmFlag

 FROM

 Patient

 WHERE

 policyGUID = @PolicyGUID

OPEN PatientConfirmRec

FETCH NEXT FROM PatientConfirmRec

WHILE @@FETCH_STATUS = 0

BEGIN

 UPDATE

 Patient

 SET

 ConfirmFlag = 'N'

 WHERE

 CURRENT OF PatientConfirmRec

 FETCH NEXT FROM PatientConfirmRec

END

CLOSE PatientConfirmRec

DEALLOCATE PatientConfirmRec

This is real code in a real production system. It can actually be reduced to:

UPDATE Patient SET ConfirmFlag = 'N'

WHERE PolicyGUID = @PolicyGUID

 Top 10 Tips for Optimizing SQL Server Performance 18

This refactored code will, of course, run much more efficiently, allow the optimizer to work its magic, and take far less
CPU time. In addition, it will be far easier to maintain. It’s important to schedule a code review of the T-SQL in your
applications, both stored code and client side, and to try to refactor such nonsense.

Bad T-SQL can also appear as inefficient queries that do not use indexes, mostly because the index is incorrect or
missing. It’s important to learn how to tune queries using query plans in SQL Server Management Studio. Figure 6
shows an example of a large query plan:

[Figure 6]

A detailed discussion of query tuning using query plans is beyond the scope of this white paper. However, the
simplest way to start this process is by turning SCAN operations into SEEKs. SCANs will read every row in the table.
For large tables, it is expensive in terms of I/O, whereas a SEEK will use an index to go straight to the required row.
This, of course, requires an index to use, so if you find SCANs in your workload, you could be missing indexes.

There are a number of good books on this topic, including:

• “Professional SQL Server Execution Plan Tuning” by Grant Fritchey

• “SQL Server Internals & Troubleshooting” (paperback) by Christian Bolton, Brent Ozar, Justin Langford, James
Rowland-Jones, Jonathan Kehayias, Cindy Gross, and Steven Wort

 Top 10 Tips for Optimizing SQL Server Performance 19

3. Plan Reuse – Recycling for SQL
Before executing a SQL statement, SQL Server first creates a query plan. This defines the method SQL Server will
use to satisfy the query. Creating a query plan requires significant CPU. Thus, SQL Server will run more efficiently if it
can reuse query plans instead of creating a new one each time a SQL statement is executed.

There are some performance counters available in the SQL Statistics performance object that will tell you whether
you are getting good plan reuse.

(Batch Requests/sec – SQL Compilations/sec) / Batch Requests/sec

This formula tells you the ratio of batches submitted to compilations. You want this number to be as small as
possible. A 1:1 ratio means that every batch submitted is being compiled, and there is no plan reuse at all.

It’s not easy to pin down the exact workload that is responsible for poor plan reuse, because the problem usually lies
in the client application code that is submitting queries. Therefore, you may need to look at the client application code
that is submitting queries. Is it using prepared parameterized statements?

Using parameterized queries not only improves plan reuse and compilation overhead, but it also reduces the SQL
injection attack risk involved with passing parameters via string concatenation.

[Figure 7]

Figure 7 shows two code examples. Though they are contrived, they illustrate the difference between building a
statement through string concatenation and using prepared statements with parameters.

 Top 10 Tips for Optimizing SQL Server Performance 20

SQL Server cannot reuse the plan from the “bad” example. If a parameter had been a string type, this function could
be used to mount a SQL injection attack. The “good” example is not susceptible to a SQL injection attack because a
parameter is used, and SQL Server is able to reuse the plan.

 Top 10 Tips for Optimizing SQL Server Performance 21

2. The Mystery of the Buffer Cache
The buffer cache is a large area of memory used by SQL Server to optimize physical I/O.

No SQL Server query execution reads data directly off the disk. The database pages are read from the buffer cache.
If the sought-after page is not in the buffer cache, a physical I/O request is queued. Then the query waits and the
page is fetched from the disk.

Changes made to data on a page from a DELETE or an UPDATE operation are also made to pages in the buffer
cache. These changes are later flushed out to the disk. This whole mechanism allows SQL Server to optimize
physical I/O in several ways:

• Multiple pages can be read and written in one I/O operation.

• Read ahead can be implemented. SQL Server may notice that for certain types of operations, it could be useful to
read sequential pages — the assumption being that right after you read the page requested, you will want to read the
adjacent page.

There are two indicators of buffer cache health:

1. MSSQL$Instance:Buffer Manager\Buffer cache hit ratio – This is the ratio of pages found in cache to pages not
found in cache. Thus, the pages need to be read off disk. Ideally, you want this number to be as high as possible. It is
possible to have a high hit ratio but still experience cache thrashing.

2. MSSQL$Instance:Buffer Manager\Page Life Expectancy – This is the amount of time that SQL Server is keeping
pages in the buffer cache before they are evicted. Microsoft says that a page life expectancy greater than five
minutes is fine. If the life expectancy falls below this, it can be an indicator of memory pressure (not enough memory)
or cache thrashing.

Cache thrashing is the term used when a large table or index scan is occurring. Every page in the scan must pass
through the buffer cache. This is very inefficient because the cache is being used to hold pages that are not likely to
be read again before they are evicted.

Since every page must pass through the cache, other pages need to be evicted to make room. A physical I/O cost is
incurred because the page must be read off disk. Cache thrashing is usually an indication that large tables or indexes
are being scanned.

To find out which tables and indexes are taking up the most space in the buffer cache, you can examine the
sys.dm_os_buffer_descriptors DMV on SQL Server 2008 R2 (but available from SQL Server 2005). The example
query below illustrates how to access the list of tables/indexes that are consuming space in the buffer cache on SQL
Server 2008 R2 (though it works on SQL Server 2005 and later):

 Top 10 Tips for Optimizing SQL Server Performance 22

SELECT

 o.name,

 i.name,

 bd.*

FROM

 sys.dm_os_buffer_descriptors bd

 INNER JOIN sys.allocation_units a

 ON bd.allocation_unit_id = a.allocation_unit_id

 INNER JOIN sys.partitions p

 ON (a.container_id = p.hobt_id AND

 a.type IN (1, 3)) OR

 (a.container_id = p.partition_id AND

 a.type = 2)

 INNER JOIN sys.objects o

 ON p.object_id = o.object_id

 INNER JOIN sys.indexes i

 ON p.object_id = i.object_id AND

 p.index_id = i.index_id

You can also use the new index DMVs to find out which tables/indexes have large amounts of physical I/O.

 Top 10 Tips for Optimizing SQL Server Performance 23

1. The Tao of Indexes
SQL Server 2008 R2 gives us some very useful new data on indexes, and you can get this data using DMVs starting
at version SQL Server 2005.

sys.dm_db_index_operational_stats
sys.dm_db_index_operational_stats contains information on current low-level I/O, locking, latching, and access
method activity for each index. Use this DMV to answer the following questions:

• Do I have a “hot” index? Do I have an index on which there is contention? The row lock wait in ms/page lock wait in
ms columns can tell us whether there have been waits on this index.

• Do I have an index that is being used inefficiently? Which indexes are currently I/O bottlenecks? The
page_io_latch_wait_ms column can tell us whether there have been I/O waits while bringing index pages into the
buffer cache – a good indicator that there is a scan access pattern.

• What sort of access patterns are in use? The range_scan_count and singleton_lookup_count columns can tell us
what sort of access patterns are used on a particular index.

[Figure 8.]

Figure 8 illustrates the output of a query that lists indexes by the total PAGE_IO_LATCH wait. This is very useful
when trying to determine which indexes are involved in I/O bottlenecks.

 Top 10 Tips for Optimizing SQL Server Performance 24

sys.dm_db_index_usage_stats
sys.dm_db_index_usage_stats contains counts of different types of index operations and the time each type of
operation was last performed. Use this DMV to answer the following questions:

• How are users using the indexes? The user_seeks, user_scans, user_lookups columns can tell you the types and
significance of user operations against indexes.

• What is the cost of an index? The user_updates column can tell you what the level of maintenance is for an index.

• When was an index last used? The last_* columns can tell you the last time an operation occurred on an index.

[Figure 9.]

Figure 9 illustrates the output of a query that lists indexes by the total number of user_seeks. If you instead wanted to
identify indexes that had a high proportion of scans, you could order by the user_scans column. Now that you have
an index name, wouldn’t it be good if you could find out what SQL statements used that index? On SQL Server 2005
and newer versions, you can.

 Top 10 Tips for Optimizing SQL Server Performance 25

Conclusion
On reflection, there are far more than 10 things you should know about SQL Server performance. However, this white
paper offers a good starting point and some practical tips about performance optimization that you can apply to your
SQL Server environment. So, remember these 10 things when optimizing SQL Server performance:

10. Benchmarking facilitates comparisons of workload behavior and lets you spot abnormal behavior because you
have a good indication of what normal behavior is.

9. Performance Counters give you quick and useful information about currently running operations.

8. Changing server settings usually yields limited returns.

7. DMVs help you identify performance bottlenecks quickly.

6. Learn to use SQL Profiler and traces.

5. SANs are more than just I/O.

4. Cursors and other bad T-SQL frequently return to haunt applications.

3. Maximize plan reuse for better SQL Server caching.

2. Learn how to read the SQL Server buffer cache and how to minimize cache thrashing.

And the number one tip for optimizing SQL Server performance:

1. Master indexing by learning how indexes are used and how to counteract the characteristics of bad indexes.

 Top 10 Tips for Optimizing SQL Server Performance 26

About the Author
Kevin Kline is the Technical Strategy Manager for SQL Server Solutions at Quest Software, a leading provider of
award-winning tools for database management and application monitoring. He is a founding board member and
former president of the international Professional Association for SQL Server (PASS) and frequently contributes to
database technology magazines, web sites, and discussion forums. Kevin also serves the community as an adviser
to the SQL Saturday education program as well as a curriculum adviser for both the University of Washington and
Purdue University at Calumet in their IT and Computer Science departments.

Kevin’s most popular book is “SQL in a Nutshell” (now in its third edition) published by O’Reilly Media. Kevin is also
author or co-author on seven other IT books, including “Transact-SQL Programming,” “Database Benchmarking: A
Practical Approach,” and “Professional SQL Server 2008 Relational Database Design and Optimization.”

A top-rated speaker, he appears at international conferences like Microsoft TechEd, DevTeach, PASS, Microsoft IT
Forum, SQL Connections, and the Best Practices Conference.

Beginning his career as a lowly hardware jockey working with PCs, Digital VAX, and Intergraph Unix workstations,
Kevin has worked on multiple large-scale database projects throughout his career at Deloitte & Touche, NASA, and
the U.S. Army.

When Kevin isn’t working on technology issues, he enjoys spending time with his wife, Rachel, his four kids, his three
stepchildren, and his basset hound and ginger kitty.

His online presences include:

• Blog: http://kevinekline.com
• Twitter: http://twitter.com/kekline

 Top 10 Tips for Optimizing SQL Server Performance 27

© 2010 Quest Software, Inc.
ALL RIGHTS RESERVED.

This document contains proprietary information protected by copyright. No part of this document may be reproduced
or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording for any
purpose without the written permission of Quest Software, Inc. (“Quest”).

The information in this document is provided in connection with Quest products. No license, express or implied, by
estoppel or otherwise, to any intellectual property right is granted by this document or in connection with the sale of
Quest products. EXCEPT AS SET FORTH IN QUEST'S TERMS AND CONDITIONS AS SPECIFIED IN THE
LICENSE AGREEMENT FOR THIS PRODUCT, QUEST ASSUMES NO LIABILITY WHATSOEVER AND
DISCLAIMS ANY EXPRESS, IMPLIED OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A
PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL QUEST BE LIABLE FOR ANY
DIRECT, INDIRECT, CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING,
WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS, BUSINESS INTERRUPTION OR LOSS OF
INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF QUEST HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Quest makes no representations or warranties with
respect to the accuracy or completeness of the contents of this document and reserves the right to make changes to
specifications and product descriptions at any time without notice. Quest does not make any commitment to update
the information contained in this document.

If you have any questions regarding your potential use of this material, contact:

Quest Software World Headquarters
LEGAL Dept
5 Polaris Way
Aliso Viejo, CA 92656
www.quest.com
email: legal@quest.com

Refer to our Web site for regional and international office information.

Trademarks
Quest, Quest Software, the Quest Software logo, AccessManager, ActiveRoles, Aelita, Akonix, AppAssure,
Benchmark Factory, Big Brother, BridgeAccess, BridgeAutoEscalate, BridgeSearch, BridgeTrak, BusinessInsight,
ChangeAuditor, ChangeManager, Defender, DeployDirector, Desktop Authority, DirectoryAnalyzer,
DirectoryTroubleshooter, DS Analyzer, DS Expert, Foglight, GPOADmin, Help Desk Authority, Imceda, IntelliProfile,
InTrust, Invirtus, iToken, I/Watch, JClass, Jint, JProbe, LeccoTech, LiteSpeed, LiveReorg, LogADmin, MessageStats,
Monosphere, MultSess, NBSpool, NetBase, NetControl, Npulse, NetPro, PassGo, PerformaSure, Point,Click,Done!,
PowerGUI, Quest Central, Quest vToolkit, Quest vWorkSpace, ReportADmin, RestoreADmin, ScriptLogic, Security
Lifecycle Map, SelfServiceADmin, SharePlex, Sitraka, SmartAlarm, Spotlight, SQL Navigator, SQL Watch, SQLab,
Stat, StealthCollect, Storage Horizon, Tag and Follow, Toad, T.O.A.D., Toad World, vAutomator, vControl,
vConverter, vFoglight, vOptimizer, vRanger, Vintela, Virtual DBA, VizionCore, Vizioncore vAutomation Suite,
Vizioncore vBackup, Vizioncore vEssentials, Vizioncore vMigrator, Vizioncore vReplicator, WebDefender, Webthority,
Xaffire, and XRT are trademarks and registered trademarks of Quest Software, Inc in the United States of America
and other countries. Other trademarks and registered trademarks used in this guide are property of their respective
owners.

Updated—April, 2011

5 Polaris Way, Aliso Viejo, CA 92656 | PHONE 800.306.9329 | WEB www.quest.com | EMAIL sales@quest.com

If you are located outside North America, you can find local office information on our Web site.

WHITE PAPER

About Quest Software, Inc.

Quest Software (Nasdaq: QSFT) simplifies and reduces the cost of managing IT for more

than 100,000 customers worldwide. Our innovative solutions make solving the toughest IT

management problems easier, enabling customers to save time and money across physical,

virtual and cloud environments. For more information about Quest solutions for application

management, database management, Windows management, virtualization management

and IT management, go to www.quest.com.

Contacting Quest Software

PHONE 800.306.9329 (United States and Canada)

 If you are located outside North America, you can find your

 local office information on our Web site.

EMAIL sales@quest.com

MAIL Quest Software, Inc.

 World Headquarters

 5 Polaris Way

 Aliso Viejo, CA 92656

 USA

Contacting Quest Support

Quest Support is available to customers who have a trial version of a Quest product or who

have purchased a commercial version and have a valid maintenance contract.

Quest Support provides around-the-clock coverage with SupportLink, our Web self-service.

Visit SupportLink at https://support.quest.com.

SupportLink gives users of Quest Software products the ability to:

•	 Search Quest’s online Knowledgebase

•	 Download the latest releases, documentation and patches for Quest products

•	 Log support cases

•	 Manage existing support cases

View the Global Support Guide for a detailed explanation of support programs, online services,

contact information and policies and procedures.

© 2011 Quest Software, Inc.
ALL RIGHTS RESERVED.

Quest, Quest Software, the Quest Software logo [and product name] are registered trademarks of Quest Software, Inc. in the U.S.A. and/or other countries. All other trademarks and registered trademarks are property of
their respective owners. WPD-Optimize-SQL-ServerPerf-US-KS-20110407

http://www.quest.com/application-monitoring/
http://www.quest.com/application-monitoring/
http://www.quest.com/database-management/
http://www.quest.com/windows-management/
http://www.quest.com/virtualization/
http://www.quest.com/

