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Individual differences in learning can be viewed through strategy

analysis, which has shown that some people take different - R.g
approaches to learning, even under the same task conditions> ﬁ—
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potential that measures feedback processing An Electrical Geodesics Inc. system and a 32-channel

HydroCel Geodesic sensor net were utilized. EEG was
: sampled at a rate of 1000 Hz and filtered using a 0.1-30
primary Objective i Hz bandpass. Data were segmented into epochs from

| h lati hio b he | : h 200msec before feedback to 800msec after feedback. v
To explore the relationship between the learning systems, the Independent Component Analysis (ICA) was completed A:* B:k

strategies employed during learning, and the processing of feedback. o remove noise and movement artifacts. 1
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Individual differences in learning can also be explored using EEG.  distancs A

vieasures

> F (#B_expected ry - #B_actuzalE)Z Event Related Potentials from the
# correct responses \ 10 2 F (#Bpresentationsr) FRN frontocentral recording site, FCz, were

Strategy — — Amplitude subjected to a temporal principal
Feature - Pattern component analysis (TPCA) !

Accuracy

# test items _
~30/70, Optimal

20/80  Multi-Cue | | ~10/90

ReSUulIts

Average Accuracy Score by Task Paired Associate Testing Accuracy by Strategy LUN o SO 22 s IOV Predictor 4 dom S8
Num Den Num

" Strategy 2 34 0.24

Time 34 0.43
Feedback Type 34 3.97
Strategy x Time 34 4.38

Strategy x Feedback Type 34 291

~
(€}

\l

@)}

Time x Feedback Type 34 0.51

Strategy x Time x Feedback Type 34 1.50

Testing Accuracy
(€))
o

o
Testing Accuracy
o)}
o

N
(63}

Mean FRN Factor Score by Feedback Type
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t(37) = -1.56, p = 0.13, 95% CI [-8.25, 1.08]
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|| Optimal Multi-Cue (68%)
| Random Pattern (10%) F(2,35) = 24.65, p < 0.001, n?=0.58

|| Single Feature (21%)

Optimal Multi-Cue M=77.68, SD = 5.54
Single Feature M=66.48, SD =4.74
Random Pattern M =57.89, SD =11.05
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