Observational and Rule-Based Artificial Grammar Learning (AGL) in Individuals with Aphasia

Carla Tierney-Hendricks, MS, CCC-SLP, Natasha De Novi, MS, CF, Sofia Vallila-Rohter, PhD, CCC-SLP

Theoretical Foundation

Multiple Learning Systems

Rule-Based Explicit system

Observational Implicit system

Both systems engaged in developmental language learning¹

- How is learning impacted in individuals with neurological impairment?
- **Aphasia** is an acquired language disorder as a result of a brain injury or stroke, impacting comprehension and production of speech.
- Many behavioral language interventions in aphasia can be categorized into explicit and implicit learning approaches²⁻⁴.
 - Effects of learning approach on therapeutic outcomes are not well understood⁵⁻⁶.

AIM 1: Determine whether **stimulus modality** affects

learning comparing visual vs. auditory AGL conditions.

H1: Learning outcomes will be greater for visual vs. auditory in PWA.

AIM 2: Determine whether instruction method affects learning, comparing observational vs. rule-based AGL conditions.

- H2a: At the group level, learning outcomes will be greater for controls than PWA.
- H2b: At the individual level, learning outcomes under the rulebased and observational condition will vary across PWA.

Participants:

10 People with Aphasia (PWA)

• Ages 41-70 (M = 57,

- SD = 9.07)
- Post stroke or brain injury

Chronic stage of recovery

8 Controls:

- Ages 49-77 (M = 61.13, *SD* = 9.51)
- No history of neurological or developmental disorder

ID	Aphasia severity (WAB AQ score)	Aphasia Type
PWA1	Mild (96.8)	Anomic
PWA4	Moderate (74.2)	Conduction
PWA5	Moderate (74.2)	Anomic
PWA9	Moderate (59.1)	Broca's
PWA22	Mild (94.4)	Anomic
PWA36	Mild (98.6)	Anomic
PWA44	Moderate (74.2)	Conduction
PWA3	Moderate (67.1)	Broca's
PWA32	Mild (92.4)	Anomic
PWA37	Moderate (52.4)	Broca's

Observational Task Protocol

Training Phase: Match-Mismatch task (no feedback) 23 unique grammatical strings (x8), total exposures = 92

> You will see one sequence Then another sequence

Press **YES** if they match Press NO if they don't match

Verbal Instructions: "All the sequences you have seen or heard followed a pattern. You will now see new sequences some follow the pattern and some do not."

Rule-Based Task Protocol

Training Phase: Instruction in 5 rules governing shape sequences; Learning criterion 60%

Rule 1

The sequence must begin with

Testing Task: 32 novel sequences are presented for grammatical (16) vs. non-grammatical (16) judgement

the no button."

Visual Condition

AIM 2: INSTRUCTION METHOD Rule-Based vs. Observational Visual

Rule-Based Condition

Grammar A

Observational Condition Grammar B ***

Artificial grammars have been used to study implicit (observational) learning ⁷⁻¹⁰. This study developed a novel rule-based protocol

Testing Task: 32 novel sequences are presented for grammatical (16) vs. non-grammatical (16) judgement

Verbal Instructions: "You will now see new sequences. If the sequence follows the rules you just learned then click the yes button. If they do not follow the rules click

Individual results:

Learning outcomes varied across PWA under the different

Implications:

							Control	PVVA	
							Mean (SD)	Mean (SD)	
.		0		Ohe	Vieu	a l	56.63	51.6	
Observational	Learning	Conditions		OD2	. visu	ai	(11.98)	(9.79)	
				Oha	Audi	tory	56.75	52.29	
Т				UD5	Audi	lory	(16.68)	(8.10)	
			Visual and A	uditor	y Obser	vationa	al ANOVA '	Table	
		Group	Predictor	df _{Num}	df _{Den}	SS _{Num}	SS _{Den}	F	р
		Controls PWA	Group	1	13	190.0 1	2536.65	0.97	.342
			Condition	1	13	3 71	1228 15	0.04	846

ObsVisua

SSM indicates sum of squares numerator. SSD indicates sum of squares denomination of squares denominat

Control

PWA and controls learned equally in both the visual and auditory modalities.

		Co Mea	n trol n (SD)	PWA Mean (SD)	
Rule	Rule Based		85.25 (11.78)		-
Obs V	Visua	1 56 (11	6.63 .98)	51.6 (9.79)	
<i>le-Based an</i> tor <i>df_{Num}</i>	nd Obse df _{Den}	rvational 2 SS _{Num}	<u>ANOVA T</u> SS _{Den}	able F	р
up 1	16 16	1789.20	1775.69	16.12 28.79	.001
$\frac{2 \times 1}{2 \times 1}$	16	746.23	1870.99	6.38	.022
	RuleObsObsle-Based aretordf_Numon1on1on1on	Rule BasedObs Visual $le-Based and Obsectiontor df_{Num} df_{Den}tor df_{Num} df_{Den}top 116ton 116ton 116ton 116$	Rule Based 85 (11) Obs Visual 56 (11) Obs Visual 56 (11) le-Based and Observational \mathcal{A} tor df _{Num} df _{Den} SS _{Num} oup 1 16 1789.20 on 1 16 3367.01 ox 1 16 746.23	Rule Based $Mean (SD)$ Rule Based 85.25 (11.78) 56.63 Obs Visual 56.63 (11.98) (11.98) le-Based and Observational ANOVA Total	$F VVA$ Mean (SD)Rule Based 85.25 61.9 (11.78)Obs Visual 56.63 51.6 (11.98)Obs Visual 56.63 (9.48) (9.79)le-Based and Observational ANOVA Tabletor df_{Num} df_{Den} SS_{Num} SS_{Den} F up116 1789.20 1775.69 16.12 (9.79) $O \times$ 116 746.23 1870.99 6.38

Training Condition

Controls and PWA performed better on rule-based task as compared to the

observational task. Control participants had higher accuracies than PWA

instruction methods.

Contrary to our hypothesis, learning outcomes were similar for the visual and auditory modalities, suggesting that PWA with mild-moderate deficits may learn equally with visual and auditory instruction.

In the rule-based condition, control participants had higher accuracy than PWA, consistent with research that language mediates learning¹¹.

 However, PWA demonstrated learning success with rule-based instruction Understanding learning mechanisms has implications for a range of

neurological populations with disordered language networks.

Future work aims to further characterize learning profiles to align learning ability and intervention method References

