

Background

• Acute THC administration in humans (Lawn et al., 2016) and rat decreased willingness to exert cognitive effort that may explain intoxication.

CENTER for

THE UNIVERSITY OF TEXAS AT DALLAS

To date, however, whether decreased cognitive effort is also pres yet to be determined.

Aim: To examine whether cannabis exposure has residual effect cannabis using adults.

Methods

Procedure:

95 adult cannabis users and non-users were recruited from Cannabis users must have used at least 3-4 times per week.

Participants	Use
N	44
Sex	21 Female
Age	M = 25.95 (
IQ	M = 111.13 (
Number of Days of MJ use over past 90 Days	M = 59.14 (S
Average grams of Cannabis per use occasion	M = 1.33 (S

Participants completed self-reported measures of cannabis psychological assessments, and the Effort Expenditure for Task (EEfRT; Treadway et al., 2009).

Statistical Analyses:

- (1)MANOVA, group was the independent variable (control all trials performed (total hard trials chosen), percent has probability, and percent hard trials chosen for only low, dependent variables.
- (2) Pearson correlations were calculated between measures
- SUH, THC/CR quantification with GC/MS) and perform (3) Simple linear regressions were conducted between perfo assessments.
- EEfRT (Casey & Cservenka, 2020).
- users.

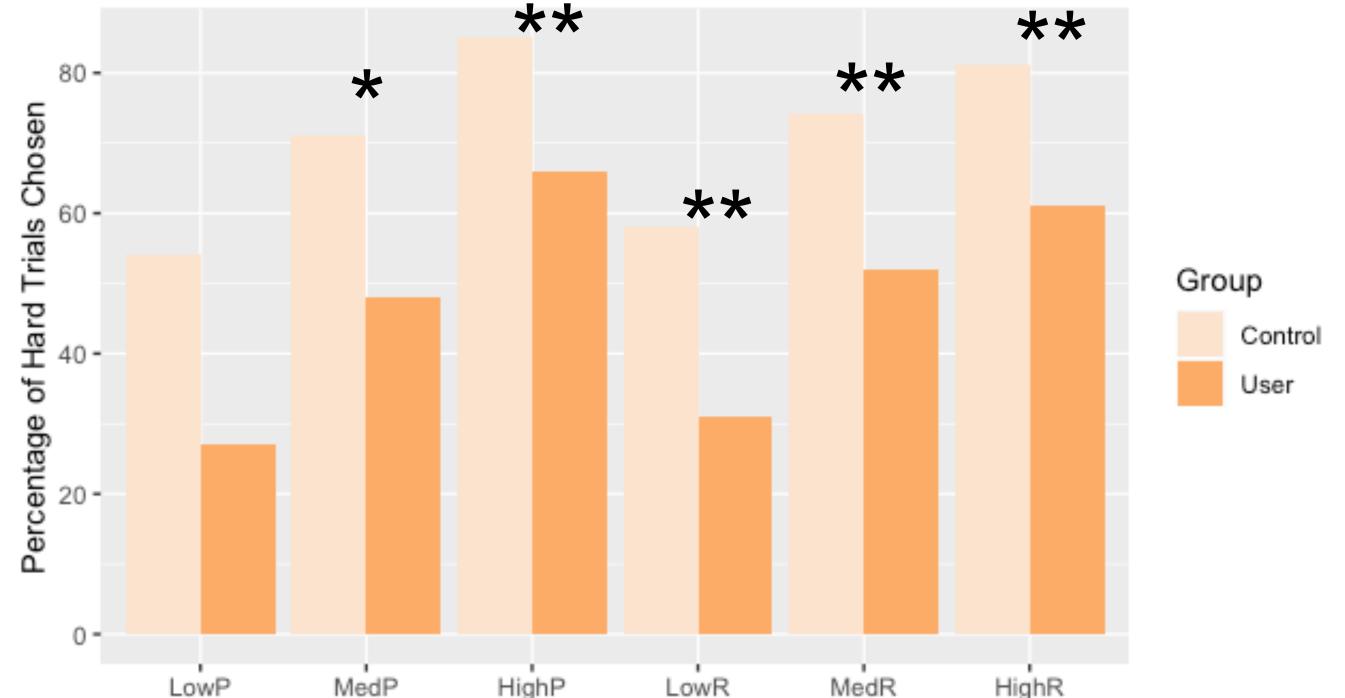
Does Cannabis have Residual Effects on Effort?

Mackenzie B. Taylor, Francesca M. Filbey Center for BrainHealth, School of Behavioral and Brain Sciences University of Texas at Dallas

d	
ts (Silveira et al., 2016) has been associated with amotivational behavior during acute cannabis	Figure 1 * p < .05 **p < .01
sent following prolonged use (vs. acute use) has	** <i>p</i> < .01
ts on cognitive effort in non-acutely intoxicated	
n the DFW area to take part in this study.	
ers Non-Users	Table 1. C
451e, 23 Male27 Female, 24 Male $(SD = 7.92)$ $M = 24.08 (SD = 7.13)$ $(SD = 14.96)$ $M = 105.62 (SD = 16.87)$ $(SD = 30.88)$ N/A	TIca
(SD = 1.17) N/A	Nu Ca sm ou 90 (T
s use, r Reward	Gr Gr Us (T Figure 2. Variables
l vs. user) and percent hard trials chosen out of rd trials chosen for only low, medium, or high medium, or high reward amounts were the	
of cannabis use measures (MINI, TLFB, MPS, ance on the EEfRT. ormance on the EEfRT and psychological	

Onclusion

• These results support and extend previous findings of reduced cognitive effort following acute exposure to THC (Lawn et al., 2016 & Silveira et al., 2016).


High amounts of THC metabolites predicting reduced hard trial choices could indicate that increased THC is detrimental to decision-making, which has been shown in previous studies, as choosing to expend more effort for a low reward magnitude and a small chance of receiving the reward is a disadvantageous choice in the

• The impulsivity results are also consistent with previous findings in decision-making in substance use disorders, where substance users are more prone to choose options which lead to smaller reward gains sooner rather than larger rewards later (Verdejo-García et al., 2008). In this instance, the amount of effort involved in the hard trials may discount the subjective value of the reward at a steep rate in cannabis users, such that they are less likely to choose that option compared to non-

Results

. MANOVA Comparing EEfRT Performance Between Users and Non-Users



Correlations Between Cannabis Users' EEfRT Performance and Cannabis Use Variables

Trial Type

		Percent Hard Trials Chosen	Percent Hard Low Probability 12%	Percent Hard Medium Probability 50%	Percent Hard High Probability 88%	Percent Hard Low Reward \$1.24-2.41	Percent Hard Medium Reward \$2.50- 3.40	Percent Hard High Reward \$3.49+
HC/CR alculated ratio	Correlation	.391	.496	.305	.178	.415	.347	.232
	Significance (2- tailed)	.065	.016*	.157	.417	.049*	.105	.288
umber of Cannabis moking days ut of the past 0 Days FLFB)	Correlation	.208	.315	.210	017	.062	.377	.128
	Significance (2- tailed)	.340	.143	.336	.937	.779	.076	.561
rams of annabis per se Occasion TLFB)	Correlation	.009	.147	.025	159	012	.003	.014
	Significance (2- tailed)	.968	.504	.910	.467	.957	.990	.951
	df	21	21	21	21	21	21	21

Linear Regressions Predicting Amount of Hard Trials Chosen on the EEfRT from Behavioral s in Cannabis Users

Lawn, W., Freeman, T. P., Pope, R. A., Joye, A., Harvey, L., Hindocha, C., Mokrysz, C., Moss, A., Wall, M. B., Bloomfield, M. A., Das, R. K., Morgan, C. J., Nutt, D. J., & Curran, H. V. (2016). Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: An evaluation of the cannabis 'amotivational' hypotheses. Psychopharmacology, 233(19), 3537–3552. https://doi.org/10.1007/s00213-016-4383-x

Silveira, M. M., Adams, W. K., Morena, M., Hill, M. N., & Winstanley, C. A. (2016). Δ 9-Tetrahydrocannabinol decreases willingness to exert cognitive effort in male rats. Journal of Psychiatry & Neuroscience: JPN, 41(6), 150363.

Verdejo-García, A., Lawrence, A. J., & Clark, L. (2008). Impulsivity as a vulnerability marker for substance-use disorders: Review of findings from highrisk research, problem gamblers and genetic association studies. Neuroscience & Biobehavioral Reviews, 32(4), 777–810. https://doi.org/10.1016/j.neubiorev.2007.11.003

References

Casey, J. L., & Cservenka, A. (2020). Effects of frequent marijuana use on risky decision-making in young adult college students. Addictive Behaviors Reports, 100253. <u>https://doi.org/10.1016/j.abrep.2020.100253</u>