

Ignore ASP.NET MVC
at your own peril
Lessons learned from the trenches

http://www.syncfusion.com?src=MVCwhitepaper

© Copyright 2010 Syncfusion, Inc. 1

CONTENTS

What is the end goal? ... 2
Requirements ... 2
Why should you even consider our opinion? ... 2
Ajax – the straw that broke the web forms abstraction model .. 3

Web Forms .. 3

Ajax and the server-side lifecycle .. 3
ASP.NET MVC .. 3

Separation of concerns - User Interface code and Business Logic ... 3
Web Forms .. 3

All in the view .. 4
ASP.NET MVC .. 4

jQuery & client-side scripting ... 5
Web Forms .. 5

ASP.NET MVC .. 5

Unobtrusive JavaScript .. 6
Web Forms .. 6

ASP.NET MVC .. 6

Performance ... 6
Web Forms: Paging implemented with Ajax using the Syncfusion Web Forms Grid control 6
ASP.NET MVC: Paging implemented with Ajax using the Syncfusion ASP.NET MVC grid control 6

Browser compatibility ... 7
Web Forms .. 7

ASP.NET MVC .. 8

Testing .. 8
Web Forms .. 8

ASP.NET MVC .. 8

Search engine optimization (SEO) .. 9
Web Forms .. 9

ASP.NET MVC .. 9

The creation of rich user interfaces .. 9
Web Forms .. 10

ASP.NET MVC .. 10

Conclusion .. 11
Action items .. 11

About Syncfusion ... 11
Appendix A ... 12

Obtrusive & Unobtrusive JavaScript.. 12

Obtrusive JavaScript – event subscriptions are embedded in the markup ... 12

Unobtrusive JavaScript (uses jQuery) – event subscriptions are made at run time ... 12

© Copyright 2010 Syncfusion, Inc. 2

What is the end goal?
As users, we enjoy the experience offered by certain websites more than others. Some of our favorite sites,

considering just the experience perspective, include stackoverflow.com (implemented with ASP.NET MVC), Google

maps and basecamphq.com (implemented with Ruby on Rails—RoR).

Consider common attributes of these sites.

 Clean look and feel

 Solid performance

 Great Ajax experience

 Solid cross-browser compatibility – use the browser of your choice and things work as expected

What does it take to provide a user experience similar to the experience provided by these sites? This document

examines several aspects that are of interest when attempting such a task using the two web-development

frameworks from Microsoft: Web Forms
1
 and ASP.NET MVC

2
. Each aspect considered has a section on how Web

Forms and ASP.NET MVC fare in that area.

The premise of this document is that ASP.NET MVC makes it much easier to create user experiences such as those

implemented by stackoverflow.com. Our position on ASP.NET MVC should be no surprise given the title of this

document. Many ASP.NET MVC advocates take a rather timid approach when it comes to recommending ASP.NET

MVC over the Web Forms framework. As you will see, we are not at all shy about our preference for ASP.NET MVC.

We strongly believe ASP.NET MVC is better, and a better fit, for every web-development need. We aim to convince

even the most die-hard fan of Web Forms to take a close look at ASP.NET MVC.

Requirements
We assume some familiarity with ASP.NET MVC (and Web Forms). Exposure to one of the numerous getting

started tutorials on the Web should be all that is required.

Why should you even consider our opinion?
At Syncfusion we have had extensive experience with both frameworks. We have produced Web Forms controls

for several years. We were the first component vendor to offer ASP.NET MVC custom controls. We ran our website

(www.syncfusion.com) using the ASP.NET Web Forms framework for several years. When ASP.NET MVC 1 was

released, we switched to ASP.NET MVC and have since maintained our website on this platform.

More importantly, we have supported thousands of customers on both platforms for a wide variety of application

needs. We have been in the trenches with them and therefore believe that we have a considered opinion on key

aspects to be considered for the implementation of successful Web applications.

1
 Whenever we say Web Forms, we refer to the forms framework built over the ASP.NET runtime and not the

runtime itself. The runtime itself is excellent and is shared with ASP.NET MVC. Features such as caching, security,
managed code use and master pages are built on the same ASP.NET runtime in both frameworks.
2
 Version 2 unless indicated otherwise.

© Copyright 2010 Syncfusion, Inc. 3

Ajax – the straw that broke the web forms abstraction model
Abstraction of the HTTP protocol is at the heart of Web Forms while shunning such abstraction is at the heart of

ASP.NET MVC. Let us consider which approach works better in the real world.

Web Forms

With Web Forms, Microsoft worked very hard to abstract the stateless nature of the HTTP protocol. The idea was

to make web development as similar as possible to Rapid Application Development (RAD) rich-client development.

Consider the implementation of server-side events. The Web Forms state model enables server-side events.

Without this plumbing, when a server-side control on a web page is initialized and sent to the client, the server no

longer has any idea what the value was originally set to. If data is changed on the client-side, the changed value is

posted back. The server has no idea that the value changed, making it impossible to trigger server-side events such

as TextChanged. Web Forms accomplished this state model by serializing state (ViewState). We have seen

instances where the improper use of ViewState cost megabytes in additional traffic, but overall this abstraction

worked well for most applications – until Ajax came along.

Ajax and the server-side lifecycle
Ajax allowed for the selective refresh of sections of a Web page. With Web Forms, even when the user interface

refresh was selective, the actual cycle of server-side post-back and server lifecycle events was required to be

complete since the server-side abstraction model depended on it. UpdatePanels, introduced to Ajax-enabled Web

Forms, essentially triggered a full-scale post-back under the covers. Data transferred and processed on the server

were pretty much the same as with a full post-back. This was certainly not the most optimal way to implement

Ajax and provided for a poor user experience.

ASP.NET MVC

With ASP.NET MVC there is no real abstraction of the details. HTTP is a stateless protocol. ASP.NET MVC forces us

to deal with this reality from day one. State can certainly be maintained in sessions, hidden fields and caches.

There is however no attempt to make these decisions on our behalf. We choose to serialize the state we need. This

is very powerful. Ajax calls are almost trivial to implement. They perform exactly as advertised and can be

selectively processed on the server. When something breaks it is much easier to debug. The building blocks do not

have a complex abstraction. We can readily observe what is happening and make changes.

Separation of concerns – User Interface code and Business Logic
The Model-View-Controller pattern has been around for over three decades. It has been adapted for use in several

user-interface frameworks. It is a very simple pattern that advocates the clear separation of responsibilities

between the model (data), controller (logic & orchestration) and the view (presentation). It has been observed to

help produce more maintainable, structured applications. Web Forms and ASP.NET MVC differ radically in their

adherence to separation of concerns best practices.

Web Forms

A key issue with Web Forms is that the controller and view (and at times even the model) are implemented

together in the Web Forms page (or server-side control). This tied key parts of the application’s logic into the view,

making the application hard to maintain (or test) over time.

© Copyright 2010 Syncfusion, Inc. 4

It is technically possible to have a clear separation between the view and business logic with Web Forms. However,

such a separation requires extra awareness and work on the developer’s part
3
. The framework does not mandate

it in any way. On the contrary, drag-and-drop rapid application development encourages a designer-centric

approach, which makes it very easy to quickly add code that makes things work but with no consideration

whatsoever for the separation of concerns. How else can we explain the presence of components such as the

SqlDataSource? These components make it trivial to write code that mixes all layers of an application – code that

leads to maintenance nightmares.

All in the view
<asp:GridView

 ID="GridView1"

 run at="server"

 DataSourceID="SqlDataSource1"

…

</asp:GridView>

<asp:SqlDataSource

 ID="SqlDataSource1"

 runat="server"

 ConnectionString =

 "<%$ ConnectionStrings:ConnectionString" %>"

 SelectCommand = "Select * from Customers" <asp:SqlDataSource>

ASP.NET MVC

ASP.NET MVC and other frameworks such as Ruby on Rails (RoR) and Spring take the separation between the View

and the Controller very seriously. The convention with these frameworks is that the controller orchestrates

interaction between the model and the view. There is no coupling between the view and the model or the view

and the controller.

The ASP.NET MVC framework bakes this separation of responsibilities into the framework. Incoming URLs are

handled by a routing framework that then instantiates the correct controller instance. The controller then

orchestrates data access as applicable and then passes information back to the framework for presentation. The

framework then completes the final step by acting on the instructions (display a view, redirect to another action,

etc.) provided by the controller. Views in ASP.NET MVC contain little to no logic. Code-behind, while supported, is

discouraged (Visual Studio does not even create a code-behind file by default). This system leads to a very clean

separation between data, business logic and the presentation, which leads to tangible long-term maintenance

benefits. Such a system is also very testable.

3
 The Web Client Software Factory from Microsoft provides guidance in this area –

http://msdn.microsoft.com/library/bb264518.aspx.

http://msdn.microsoft.com/library/bb264518.aspx

© Copyright 2010 Syncfusion, Inc. 5

jQuery & client-side scripting
In the early days of Web development, client-side script was mostly relegated to tasks such as validation. With the

advent of Ajax this changed and a lot of complex JavaScript was written to create AJAX-enabled Web applications.

This was hard work. Client-side scripting has a reputation for being quirky and hard to get right. IDE support for the

JavaScript language was lacking until recently. The language itself, while very capable, was not understood very

well. The DOM as implemented by different browsers caused several compatibility issues and generally earned its

name as a difficult area to get right.

Over time, frameworks emerged to make this work easier. One such framework that emerged, and has quickly

become the de facto standard for authoring client-side functionality, is the jQuery
4
 framework. jQuery makes it

quite easy to work with client-side script. It abstracts away differences between common browser platforms and

offers an elegant CSS-like syntax for targeting elements of the DOM. This, coupled with its fluid interface, has made

client-side programming a joy.

The Web Forms framework and the ASP.NET MVC framework differ substantially in their ability to work seamlessly

with jQuery.

Web Forms

Web Forms applications can use jQuery but not in a very optimal manner. Web Forms controls act as self-

contained units and produce an extensive amount of intricate markup (presentation and behavior code is often

inline). Container controls also implement an interface called INamingContainer, which translates into some really

fancy client-side element IDs. This makes it very hard to target such elements in a predictable manner from jQuery.

Consider the following output from one of our Web Forms grid samples. Notice the complex and hard-to-pin-down

nature of the generated DOM element IDs.

<div id="ctl00_PagePlaceholder_GridGroupingControl1">

 <input type="hidden" id="ctl00_PagePlaceholder_GridGroupingControl1CurrentRow"

name="ctl00_PagePlaceholder_GridGroupingControl1CurrentRow"

value="ctl00_PagePlaceholder_GridGroupingControl1~TR~0~_TOPGROUP_^48*R0" />

ASP.NET MVC

With ASP.NET MVC, developers have complete control over the markup. This makes it the norm to have HTML that

is jQuery friendly. Consider the following output from one of our ASP.NET MVC grid samples. This markup can be

easily targeted using a jQuery selector (class selector $(‘.RowCell’) for instance).

<td class="RowCell">10030</td><td class="RowCell">1</td><td class="RowCell">LILAS</td>

4
 www.jquery.com

http://www.jquery.com/

© Copyright 2010 Syncfusion, Inc. 6

Unobtrusive JavaScript
Another aspect to client-side programming that is now widely seen as required practice is the use of Unobtrusive

JavaScript
5
. Unobtrusive JavaScript helps tackle browser inconsistencies. It allows for scaling functionality to the

client being targeted. It also allows for easier management of the view (including styling with CSS).

Web Forms

With Web Forms applications there is little control over the markup produced by an application. Most server-side

controls are, as mentioned earlier, self-contained units of content, presentation and behavior. It is certainly

possible for Web Forms controls to be written with Unobtrusive JavaScript principles taken into account.

Unfortunately, this is not the case with the vast majority of controls available for Web Forms.

ASP.NET MVC

ASP.NET MVC applications and controls adhere to the practice of making JavaScript code unobtrusive. For

instance, a DateTimePicker would be rendered as a TextBox by default. If JavaScript is enabled on the client, it

would then be wired to behave as a DateTimePicker on the client. If not, it will function as a TextBox, which will

still allow the user to enter dates. Controls written for the ASP.NET MVC framework (typically) respect this model

and attach behavior on the client-side, keeping the model clearly separate from the content and presentation.

Performance
The ASP.NET MVC Framework allows for very lightweight markup. The application of Unobtrusive JavaScript

principles also leads to less markup being produced since it avoids repetitive inline markup such as that used for

event subscriptions. Any state maintained by applications is targeted, and usually a small fraction of ViewState on

similar Web Forms pages will be targeted.

Performance differences are even more pronounced with Ajax applications. With Web Forms, the entire page

lifecycle with all its associated traffic/code is required. This leads to much higher traffic back-and-forth with the

server.

Consider the following traffic reports from an HTTP traffic diagnostics utility – Fiddler
6
 tracking two similar

applications constructed using Web Forms and ASP.NET MVC.

 Web Forms: Paging implemented with
Ajax using the Syncfusion Web Forms
Grid control

ASP.NET MVC: Paging implemented
with Ajax using the Syncfusion
ASP.NET MVC grid control

User interface

Data sent 17.5 kB 1.5 kB

5
 If you are not familiar with Unobtrusive JavaScript, please refer to Appendix A for a quick summary.

6
 http://www.fiddler2.com

© Copyright 2010 Syncfusion, Inc. 7

Data received 50.1 kB 1.4 kB

Actual data
received

Abbreviated version – complete data is about 15 pages
long

19459|updatePanel|ctl00_PagePlaceholder_GridPanel|
 <table id="GridTable">
 <tr>
 <td>
 <div
id="ctl00_PagePlaceholder_GridGroupingControl1">
 <input type="hidden"
id="ctl00_PagePlaceholder_GridGroupingControl1CurrentR
ow"
name="ctl00_PagePlaceholder_GridGroupingControl1Curre
ntRow"
value="ctl00_PagePlaceholder_GridGroupingControl1~TR~0
~_TOPGROUP_^48*R0" />

Complete data received

[{"UniversityCode":10037,"Title":"Enterprise
Computing","Duration":90,"CourseFees":1500,"CGPA
":9.75},{"UniversityCode":10038,"Title":"Mobile
Computing","Duration":45,"CourseFees":1250,"CGPA
":9.66},{"UniversityCode":10039,"Title":"WAP and
XML","Duration":60,"CourseFees":1000,"CGPA":8.33
},{"UniversityCode":10040,"Title":"Design
Patterns","Duration":75,"CourseFees":1500,"CGPA":
8.66},{"UniversityCode":10041,"Title":"Distributed
Component
Architecture","Duration":90,"CourseFees":2000,"CG
PA":7.52},{"UniversityCode":10042,"Title":"Data
Structures","Duration":60,"CourseFees":1000,"CGPA
":9.55},{"UniversityCode":10043,"Title":"Neural
Networks","Duration":75,"CourseFees":1750,"CGPA"
:9.03},{"UniversityCode":10044,"Title":"Genetic
Algorithms","Duration":90,"CourseFees":2000,"CGPA
":8.91},{"UniversityCode":10045,"Title":"Grid
Computing","Duration":30,"CourseFees":1000,"CGPA
":9.55},{"UniversityCode":10046,"Title":"Cloud
Computing","Duration":60,"CourseFees":2500,"CGPA
":9.87},{"UniversityCode":10047,"Title":"Enterprise
Computing","Duration":90,"CourseFees":1500,"CGPA
":9.75},{"UniversityCode":10048,"Title":"Mobile
Computing","Duration":45,"CourseFees":1250,"CGPA
":9.66}]

The ASP.NET MVC application has no need to produce an elaborate amount of markup to cater to a complicated

server-side abstraction. In this case, only JSON (http://www.json.org/) data is transmitted back from the server on

paging. The amount of data transmitted back from the server is 50 KB with the Web Forms solution versus 1.5 KB

for the ASP.NET MVC solution.

Browser compatibility
Internet Explorer no longer commands the 90+% market share that it did back in 2003. Today, the numbers are

more along the lines seen below, making it very important to ensure that Web applications are browser agnostic.

 Internet Explorer – 60%

 Firefox – 25%

 Google Chrome – 7%

Web Forms

It is entirely possible that a future generation of Web Forms controls will be implemented using jQuery or similar

frameworks. Controls available on the market today are mostly written using vendor-specific JavaScript libraries

that offer varied support across browsers. If browser compatibility is on your list of concerns, Web Forms is not a

great solution.

http://www.json.org/

© Copyright 2010 Syncfusion, Inc. 8

ASP.NET MVC

ASP.NET MVC applications and controls typically implement their client-side functionality using jQuery. This leads

to solid browser compatibility. In general, all modern browsers should work well with ASP.NET MVC applications

and controls.

Testing
Solid and easy testing of business logic and data access is considered to be critical to the development of

maintainable Web applications.

Web Forms

Web Forms applications are very hard to test. This is primarily due to the reasons below.

 It remains hard to automate Web Forms applications without running them inside a complete hosting

environment. It is not possible to easily mock a complex hosting environment such as IIS.

 The view often contains business logic and presentation, making it very hard to test the business logic

without testing the presentation.

In practice this meant that Web Forms applications were usually tested using elaborate UI automation tools or

manual testing – an error-prone and expensive process.

ASP.NET MVC

ASP.NET MVC makes testing easy, even fun. All of the core components of ASP.NET MVC are designed to easily run

from any unit testing container. Consider the following test that validates the business logic of a simple calculation

engine. The test is trivial to set up and run. It takes no time to execute and verifies that the business logic of the

system works as expected. The view does nothing more than display the returned result.

 [TestMethod]

 public void Calculator_returns_correct_values_with_single_digit_numbers()

 {

 // Arrange

 HomeController controller = new HomeController();

 var vm = new Models.CalculatorViewModel();

 vm.Operands = new Models.Operands();

 vm.Operands.One = 7;

 vm.Operands.Two = 9;

 // Act

© Copyright 2010 Syncfusion, Inc. 9

 ActionResult result = controller.Calculate(vm);

 // Assert

 Assert.IsNotNull(result);

 Assert.IsInstanceOfType(result, typeof(RedirectToRouteResult));

 Assert.IsNotNull(controller.TempData["vm"]);

 Assert.IsInstanceOfType(controller.TempData["vm"],

typeof(Models.CalculatorViewModel));

 var vmResult = controller.TempData["vm"] as Models.CalculatorViewModel;

 Assert.AreEqual(vmResult.Result, 16);

 }

Search engine optimization (SEO)
Wikipedia defines SEO, in part, as the process of improving the volume or quality of traffic to a Web site. There are

many, many aspects to this science (or art if you prefer). There is much room for discussion on what works and

what does not. One aspect that everyone agrees on has to do with friendly URLs. URLs such as this

http://www.mysite.com/products/toys/fancy-water-cannon are much friendlier than, for instance,

http://www.mysite.com/products.aspx?pid=201. Friendly URLs fare well with search engines since these URLs

allow the search engine to correlate terms that appear in the URL with other aspects being considered to

determine ranking.

It is also generally agreed that URLs that are “hackable” – URLs where the user is able to remove or add parts and

thereby navigate the site – are preferred. For instance, removing “fancy-water-cannon” from the above URL

should lead to a page that lists all available toys.

Web Forms

It is possible to formulate friendly URLs with Web Forms. This is not, however, the norm. The norm is to deal with

ASP.NET pages as physical resources with URLs reflecting the path to these resources within the server.

ASP.NET MVC

ASP.NET MVC treats action methods as page content and completely hides physical page details. The routing

system is very elegant and tightly woven into the framework. It allows for the easy creation of friendly and

“hackable” URLs.

The creation of rich user interfaces
One of the major criticisms of ASP.NET MVC that we have seen has to do with the availability of rich prepackaged

user interface elements. Surely, this is one area where Web Forms excels, right? Read on and you may be

surprised.

http://www.mysite.com/products/toys/fancy-water-cannon
http://www.mysite.com/products.aspx?pid=201

© Copyright 2010 Syncfusion, Inc. 10

Web Forms

Web Forms has a wide variety of controls available from Microsoft and numerous third party vendors. They make

it easy to add a rich and polished user interface to your applications.

ASP.NET MVC

It is a common misconception that ASP.NET MVC does not offer a rich set of user-interface elements. Microsoft

provides a limited set of helpers out of the box, but a solid third-party control market is taking root. In the past

year, a number of vendors have introduced rich user-interface elements for this market. Every major component

vendor has a currently shipping suite of controls or has one in the works.

At Syncfusion, we have been shipping a complete set of controls. We offer rich menus, editors, grids, charts, an

Outlook-like scheduler, gauges and much more. A few representative control screenshots are displayed below.

In all, Syncfusion offers over 25 controls for the ASP.NET MVC platform with many more shipping in the coming

weeks. These controls are easy to consume in ASP.NET MVC and provide for a very polished UI while retaining the

benefits of the ASP.NET MVC platform.

With Visual Studio 2010, ASP.NET MVC is tightly integrated into the IDE. Visual Studio’s excellent scaffolding

support for ASP.NET MVC allows for a very productive experience. It takes only a few clicks to create a fully

functional, strongly typed view for an action method. ASP.NET MVC’s convention-over-configuration approach

makes it very easy to get started. You can certainly build great looking user interfaces with minimal effort when

working with ASP.NET MVC.

© Copyright 2010 Syncfusion, Inc. 11

Conclusion
We hope that the topics considered in this document have been of interest. With ASP.NET MVC you can truly

venture to build websites that offer extremely compelling experiences such as those offered by

stackoverflow.com.

Action items

 Consider the ASP.NET MVC 2 platform for your Web development needs

 Download a suite of ASP.NET controls from your favorite vendor and put them to the test

 Beat your competition to the punch and be the first in your industry to switch to ASP.NET MVC!

There is simply no excuse to be messing with ViewState anymore.

About Syncfusion
Syncfusion, Inc. is a leading provider of enterprise-class software components and tools for the Microsoft .NET

platform. With Syncfusion, developers can move beyond simply coding applications to delivering business

innovation—the elegant user interfaces, business intelligence dashboards, and sophisticated reporting that today's

business users need, in the formats they demand. Syncfusion's award-winning .NET components and controls are

designed to grow with you, whether you're using Windows Forms, WPF, ASP.NET, ASP.NET MVC, or Silverlight. For

questions about products, pricing, and licensing, please contact sales@syncfusion.com or call 1.888.9DOTNET (US

only) or +1 919.481.1974.

Syncfusion’s ASP.NET MVC offering: a solid suite of over 25 controls including grids, rich text editors, masked edits,

charts, gauges, schedulers, menus, toolbars and much more.

Online Demo: http://samples.syncfusion.com/sfmvcsamplebrowser/8.2.0.18/MVC/tools_MVC/samples/3.5

Product Page: http://www.syncfusion.com/products/user-interface-edition/aspnet-mvc/Tools

http://www.syncfusion.com/?src=MVCwhitepaper
mailto:sales@syncfusion.com
http://samples.syncfusion.com/sfmvcsamplebrowser/8.2.0.18/MVC/tools_MVC/samples/3.5
http://www.syncfusion.com/products/user-interface-edition/aspnet-mvc/Tools

© Copyright 2010 Syncfusion, Inc. 12

APPENDIX A

Obtrusive & Unobtrusive JavaScript

This involves the separation of client-side-scripting based functionality from a Web page's structure, content

(HTML) and presentation (CSS). For instance, consider the two examples below.

Obtrusive JavaScript – event subscriptions are embedded in the markup

<script type="text/javascript">

 function sayHello(){

 alert('Hello!');

}

</script>

</head>

<body>

<input name="btn" id="btn" type="button" value="Hello!" onclick="sayHello();" />

</body>

</html>

Unobtrusive JavaScript (uses jQuery) – event subscriptions are made at run

time

 $(document).ready(function() {

 $("#btn").click(function(){

 alert('Hello from jQuery!');}

);

// button has no even wire up code

<body>

<input name="btn" id="btn" type="button" value="Hello from jQuery!" />

</body>

Unobtrusive JavaScript helps tackle browser inconsistencies. It allows for scaling functionality to the client being

targeted. It also allows for easier management of the view (including styling with CSS).

