
Future directions

Resting state fMRI Di�usion tensor imaging

 
Figure 8. A. Functional connectivity correlation matrix and di�usion tensor magnetic resonance 
imaging.

We wish to incorporate functional MRI using resting state connectivity data acquired 
from The Human Connectome Project, and Di�usion Tensor Imaging data, to func-
tionally and anatomically constrain our model.

We would also like to quantify dynamic connectivity and network synchrony at a milli-
second timescale by allowing for time lags in correlation values relative to white 
matter path length, also derived from DTI.

We would like to track seizure propogation in 3D and predict a�ected locations.

We wish to explore the best implantation locations by investigating locations 
that are particularly informative to reconstruct at speci�c locations as well as the over-
all reconstruction quality.

We are currently working on an open-source toolbox!

Reconstruction quality
We repeated this process for all electrodes, collecting correlation values for each elec-
trode location. We interpolated values for all locations in a standard brain.

Correlation

Figure 5. The distribution of correlation coe�cients between observed and reconstructed LFPs 
across all electrodes and patients.
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Correlation

Figure 4. Average correlation between the observed and reconstructed LFP data by location. We 
interpolated values for every voxel location.

We also compared this distribution 
of correlation coe�cients to the 
distribution of average correlation 
coe�cients from each electrode 
and its nearest neighbor from the 
same patient: t(4148) = 2.36, p = 
0.018.
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Reconstruction accuracy
To test the accuracy of the estimated activity, we held out each electrode from the full 
dataset — treating it as an unobserved location.

We estimated the combined correlation matrix for every other patient’s data. 

Using this new combined correlation matrix, we estimate the activity for the held out 
electrode, and compare it to the observed activity.

Figure 3.   A . Observed and reconstructed LFP from a single electrode over a 4 second 
window. B . Relation between distributions of observed vs. reconstructed voltages from one 
patient. 
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Reconstruction accuracy
To test the accuracy of the estimated activity, we held out each electrode from the full 
dataset — treating it as an unobserved location. We estimated the combined correla-
tion matrix for every other patient’s data. Using this new combined correlation matrix, 
we estimate the activity for the held out electrode, and compare it to the observed ac-
tivity.
We repeated this process for all electrodes, collecting correlation values for each elec-
trode location. Then, we repeated this procedure across six frequency bands and 
broadband power. 

Figure 3.  A, B. Distributions of correlations between observed versus reconstructed activity by elec-
trode. C,D. Reconstruction accuracy across location.

To quantify a location’s “information score,” we �rst labeled each patient’s electrode 
with the average reconstruction accuracy for that patient. Next, for each 4 mm3 voxel, 
we computed the average value across all electrodes within 20 MNI units of that vox-
el’s center. This yielded an information score for each voxel.

Overlaying Yeo et al.’s (2011) seven-network parcellation map onto brain locations 
that were most informative about each frequency band, we computed the proportion 
of voxels that belonged to each of the seven networks (Fig. 6D). 

We used Neurosynth (Rubin et al. 2017) to identify (using meta analyses of the neuro-
imaging literature) the top �ve most common terms associated with each
frequency-speci�c map (Fig. 6C). 

Figure 5. Most informative recording locations by frequency band. A. Intersections between informa-
tion score maps by frequency band. B. Network memberships of the most informative brain regions. C. 
Neurosynth terms. D. Network parcellation map and legend by Yeo et al. (2011). E. Combined map.

Figure 4: Reconstruction accuracy across all electrodes in two ECoG datasets for each frequency band. 
A-D. Distributions of correlations between observed versus reconstructed activity by electrode for 
each frequency band in Dataset 1. Within each color group, the left bar displays the distribution of 
across-patient reconstruction accuracies, while the right bar displays within-patient reconstruction ac-
curacies. 
B-C-E-F. Upper triangles: warmer colors (positive t-values) indicate that the reconstruction accuracy for 
the given row was greater than in the given column; cooler colors (negative t-values) indicate the accu-
racy was lower. Lower triangles denote the corresponding p-values for the t-tests, and the diagonal 
displays the average reconstruction accuracy within each frequency band. 

There are a number of future directions, both methodologically and practically, in 
which our method might be extended.

Incorporation of fMRI and DTI data as well as more sophisticated Gaussian process 
models could increase the power and accuracy of the method.

There is also potential for addressing potential future therapeutic applications, both 
in epilepsy and other comorbid diseases. Our method and software package, Super-
EEG, has already been applied to detecting depression biomarkers (Scangos et al.).

General approach
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Figure 2. A. All electrode locations (one patient’s electrodes in red and the to-be-reconstructed elec-
trode in blue). B. Calculate weights using radial basis function (RBF) . C. Use RBF-weighted averages 
to estimate correlation between each patient’s electrode locations and all locations. D. Average pa-
tient-speci�c correlation matrices. E. & F. Use the observed activity (E) for from patient’s electrodes 
and the estimated correlation (D) to compute the posterior mean (F).
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Introduction & intuition
There is inherent compromise between high temporal and high spatial resolution in 
current human brain recordings.  

ECoG has both high spatial and temporal resolution, but has minimal brain coverage 
for individual patients.  However, there is good coverage across patients.

Our technique leverages correlational activity across patients, in conjunction with 
known activity, to infer activity at other unrecorded locations.
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Figure 1. Intuition of the approach.  If we know how activity in locations A and B are correlated in pa-
tient 1 and we know how activity in locations B and C in patient 2 are correlated, and if patient 1 and 
2 share some correlation, then we can predict activty at missing locations.

Most informative locations across
networks and frequency bands
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