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• IME indicates a trend toward the prior from mid-adaptation onwards (𝜎# and 𝜎$). 

Bayesian integration (representative subject)
• Cursor error increases as function of noisy visual uncertainty throughout adaptation, 

indicating Bayesian integration of likelihood.
• Abscissa intersects the mean of the prior from mid/late adaptation.
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(( 45) • The rate and extent of visuomotor adaptation is proportional to the variability of the sensory likelihood.

• Initial movement error, which reflects feedforward rather than feedback influences, provides an accurate estimate of 
the evolving visuomotor prior. 

• A unimodal prior is learned when either a unimodal or bimodal distribution of visuomotor rotations is imposed, as predicted 
by a Bayesian update model. 

• Bayesian integration in sensorimotor learning4 involves both feedforward and feedback components.
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• IME indicates a prior of 0° that remains stationary throughout adaptation (𝜎# and 𝜎$).
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• Adaptation will be faster and occur to a greater extent in the low 
variability group compared to the high variability group.

• Cursor and endpoint error (EE) will reflect Bayesian integration of 
the current sensory feedback (likelihood) and the learned prior 
throughout adaptation.

• Initial movement error (IME) (shortest path to target - movement 
vector 150ms after movement onset) will reflect the learned prior 
(uninfluenced by current sensory feedback), which follows a simple 
Bayesian update rule:
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• Unimodal prior during early adaptation. Bimodal prior emerges mid-adaptation onwards.
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• Accordingly, the unimodal group will learn a prior of -12.0 ± 4.0° and the bimodal group will 
learn an average of the CW and CCW prior distributions (0°). 
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Partitioning Feedforward from Feedback Components of Bayesian Sensorimotor Learning

Movement planning and execution are accomplished through optimal 
integration of sensory information and internal predictive signals1,2,3. This 
integration may occur in a Bayes-optimal manner during visuomotor 
feedback control4,5. However, it remains unclear whether feedforward 
updating in visuomotor adaptation follows similar Bayesian principles6. We 
replicate Körding and Wolpert’s (2004) findings that humans can integrate 
sensory information in Bayes-optimal fashion during feedback control, and 
extend these findings by asking whether feedforward adaptation also follows 
Bayesian principles, and what the time course for Bayesian integration is in 
both feedforward and feedback control.

Rate and extent of adaptation is proportional to variability of sensory likelihood.

Slope = 0.68
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Experimental paradigm. (a-d) Pattern of midpoint
feedback (colored inset), endpoint visual feedback,
and distribution of applied rotation for each group.
(e) KINARM workspace with example hand and
cursor paths shown for different visual uncertainty
conditions when a 12° CCW rotation is applied.
Dashed white curves indicate spatial thresholds for
triggering feedback.


