

SQL Query Tuning for SQL Server
Getting It Right the First Time

By Dean Richards, Senior DBA

Confio Software

4772 Walnut Street, Suite 100

Boulder, CO 80301

866.CONFIO.1

www.confio.com

http://www.confio.com/

A White Paper by Confio Software

2

SQL Query Tuning for SQL Server, January 2011

© 2011

Introduction

As part of my job as a Senior DBA with Confio Software, I get to review SQL Server database

performance data with hundreds of customers a year. During the review process I provide performance

improvement recommendations based on the response time data from Confio’s performance analysis

tool, Ignite for SQL Server. I also try to go above and beyond the raw data to provide valuable

performance tuning tips for our customers. Over the years, the DBAs at Confio have developed a

process that works time and time again. This process is the focus of this white paper and follows four

fundamental steps:

1. Focus on the correct SQL statements
2. Utilize response time analysis
3. Gather accurate execution plans
4. Use SQL diagramming

Why Focus on SQL Statements

When I think about performance tuning for a database environment, the following three types of tuning

approaches come to mind:

 Application Tuning – tune the application code to process data more efficiently.

 Instance Tuning – tune the SQL Server instance via modification of parameters or altering the

environment in which the database executes.

 SQL Statement Tuning – tune the SQL statements used to retrieve data.

The third approach, SQL tuning, seems to be a point of contention with many of our customers because

it is often unclear which group (database administration or development) is responsible. This is also the

area where I tend to focus my efforts for reasons discussed throughout this paper.

I am often asked why I focus on SQL statement tuning rather than instance or application tuning.

Instance and application tuning are definitely beneficial in the right circumstances; however, I typically

find that SQL tuning provides the most “bang for the buck” because it is often the underlying

performance issue. My experience is that approximately 75-85% of the performance problems were

solved using SQL tuning techniques.

Why does SQL tuning provide the most benefit? Most applications (there will always be exceptions)

accessing databases on the backend require simple manipulation of data. There are typically no complex

formulas or algorithms that require significant application time and thus tuning. These applications also

deal with smaller amounts of data so even if the processing of that data is inefficient, it does not

become a significant portion of the total waiting time for the end user. For example, a web application

that displays the status of an order may only manipulate a few rows of data. Even if processing those

A White Paper by Confio Software

3

SQL Query Tuning for SQL Server, January 2011

© 2011

rows is done inefficiently as possible, the total time will still be relatively small. Again, there are always

exceptions.

On the flip side, the database is responsible for examining large amounts of data to retrieve the status of

that order. There may be several tables involved containing millions of rows of data each and

inefficiencies can quickly become huge bottlenecks. Tuning the underlying query in this case typically

provides the most performance benefit rather than focusing on the application code.

Which SQL Statement Should be Tuned

If SQL statement tuning can provide the most benefit, the next question is “Which SQL statement should

I focus on”? Often I find that a DBA or developer did a great job of tuning a SQL statement, but later

discovered it was not the root cause of the performance problem the end users were complaining

about. Tuning the wrong SQL statement is clearly a waste of time, so what is the best way to know

which SQL to tune? Choosing the correct SQL statement can involve looking for SQL statements that:

 Perform the most logical I/O

 Consume the most CPU

 Perform costly full table or index scans

 Use an execution plan with a high cost

 And many more…

With some of the strategies from above, what if the underlying problem was a blocking issue? The

problematic queries may not appear in any of these lists and you would miss them. How do you know

which queries are causing your performance issues? The answer lies in measuring total elapsed times

rather than using the above measurements, i.e. which SQL statements spend the most time executing in

the database. A query similar to the following will retrieve a list of SQL statements from SQL Server

taking the longest cumulative time to execute:

SELECT sql_handle, statement_start_offset, statement_end_offset, plan_handle,

execution_count, total_logical_reads, total_physical_reads, total_elapsed_time, st.text

FROM sys.dm_exec_query_stats AS qs

CROSS APPLY sys.dm_exec_sql_text(qs.sql_handle) AS st

ORDER BY total_elapsed_time DESC

When end-users complain about performance they will say something similar to: “When I click the

submit button on this web page, it takes 30-40 seconds.” They use elapsed time as a way to describe the

problem, so why not use elapsed time when finding the queries to tune.

The query above will provide a definitive list of SQL statements with the highest elapsed time since

instance startup. Often this is based on a timeframe of several months or even longer, so collecting and

saving this data periodically with deltas will provide the best information. For example, running a query

similar to the above (along with other pertinent data based on your application) every 10 minutes and

saving the data will allow you to go back in time to find a problem. If an end-user complains about

performance from yesterday at 3:00 p.m., reviewing the archived data from a timeframe around 3:00

yesterday will help you understand what was performing poorly during the problematic time.

A White Paper by Confio Software

4

SQL Query Tuning for SQL Server, January 2011

© 2011

A much easier method for collecting this type of data and finding the problematic SQL statement is to

use a response time based performance analysis tool like Ignite for SQL Server. Ignite collects response

time data once per second about all SQL statements and can quickly rank them according to the ones

causing the most response time. The screenshot below shows the Top 15 SQL statements in a SQL

Server instance from a total elapsed time perspective.

Database Response Time View

Once the most problematic SQL is known, understanding why the SQL is slow is paramount. Is the

problem an unnecessary full table scan, a locking issue, disk I/O related, etc? SQL Server wait types very

clearly show the problem.

The picture above depicts a SQL statement entering the SQL Server instance and going through a series

of steps. These steps may include reading data from disk, waiting on a locking issue, waiting for the

A White Paper by Confio Software

5

SQL Query Tuning for SQL Server, January 2011

© 2011

instance to commit data, and many more. Measuring the total execution time for a SQL statement

reveals which SQL to tune and measuring how much time that SQL waits on specific steps provides the

best clues for fixing the issue. For example, if a SQL statement executes for 40 seconds, what is the

major cause of that delay? A SQL that waits on an event named “PAGEIOLATCH_SH” may means it is

waiting on physical disk I/O and possibly performing a full table scan, while waits on “LCK_M_X” indicate

the SQL is experiencing a locking issue. The solutions for these problems are much different and are

where wait types help the most.

Obtaining the Wait Type Information

To see what an active query is currently waiting for, the dm_exec_requests table provides that data. A

query similar to the following can be used:

select status, start_time, sql_handle, plan_handle, statement_start_offset, statement_end_offset,
 CASE wait_time WHEN 0 THEN 'Memory/CPU' ELSE wait_type END AS wait_type
from sys.dm_exec_requests where session_id=72

The following table shows the most common wait types (based on Ignite data summarized from

hundreds of customers) along with ideas for tuning SQL statements waiting on these events.

Wait Event / Suggestions Wait Class

Memory/CPU

 Waiting to read data from memory or executing
CPU intensive code

 Tune queries to read less data, i.e. use an index
 Avoid excessive use of inline user-defined functions

PAGEIOLATCH_SH, PAGEIOLATCH_EX User I/O

 Tune indexes
 Tune disks
 Increase buffer cache

CXPACKET Parallelism

 Reduce parallelism at query level (MAXDOP)
 Reduce parallelism at server level
 Turn off hyperthreading

ASYNC_NETWORK_IO Network

 Reduce amount of data query is returning
 Speed up network between server and client

WRITELOG Commit

 Tune applications to commit data less often
 Tune disks where transaction logs exist
 Set isolation level appropriately
 Size transaction log properly

MSQL_XP System

 Waiting on extended stored procedure
 Tune extended stored procedure

LCK_M_S, LCK_M_X, LCK_M_IX, LCK_M_* Concurrency

 Tune blocking queries so locks are release faster
 Ensure proper error handling so locks are released
 Code applications to fetch all result rows
 Use proper isolation levels
 Check for orphaned processes holding locks

A White Paper by Confio Software

6

SQL Query Tuning for SQL Server, January 2011

© 2011

LATCH_EX Concurrency

 More than one session is trying to access same
page of memory

 Tune queries so they read less data from memory

Execution Plan

Execution plans further the understanding of where a SQL statement can be made more efficient. If

there are five tables involved and the query waits mostly on “PAGEIOLATCH_SH” possibly indicating a

full table or index scan, the plan will help determine where that is occurring. Plans supply costing

information, data access paths, join operations and many other things to aid in tuning efforts.

However, not all plans are useful. Do you know that getting a plan from SQL Server Management Studio

(SSMS) can be wrong and not match how SQL Server is really executing the statement? It can be wrong

because the query is executing from inside SSMS and not from the application code and environment.

The application may set session variables that are not set from SSMS, parameter data types may be

defined differently, and many other things. If plans from SSMS can be wrong, where is a better place to

retrieve the correct one? The best places to get execution plan information are:

1. dm_exec_query_plan() or dm_exec_text_query_plan() – contains raw data for execution plans

of SQL statements. It provides the plan SQL Server used so why not go straight to the source.

Using dm_exec_query_plan from SSMS will provide a nice graphical view of the plan.

2. Tracing – provides great information as well as executions plans for a specific session, user or

the entire system.

3. Historical Data – if possible, collect and save execution plan information so you can go back to

3:00 pm yesterday to understand why the SQL statement performed poorly.

Once you have an accurate execution plan, determine how each of the SQL components is being

executed. Based on response time data, you should already have a feel if full table scans are significant,

whether more time is spent reading indexes or if you have other issues. Execution plans help determine

more about those problems.

A White Paper by Confio Software

7

SQL Query Tuning for SQL Server, January 2011

© 2011

Not All Plans Created Equal

Here is an example where, based on response time data, we believed the query was doing a full table

scan since the SQL was spending over 95% of its execution time waiting for PAGEIOLATCH_SH and the

logical and physical reads were very high per execution. However, when we reviewed the plan output

from SSMS, the query looked very efficient and seemed to be using an index to retrieve the data. Here

is the statement and the plan:

SELECT company, attribute FROM data_out WHERE segment = @S1;

Plan from SSMS

How is this possible? It is a very simple query with one criterion in the WHERE clause, so if it is executing

very efficiently, why are the end-users waiting 20 seconds for this query each time it executes? The

answer is revealed when we review the execution plan from a trace or by retrieving it from the

dm_exec_query_plan DMO:

select sql_handle, plan_handle from sys.dm_exec_requests where session_id=72
 -- returned the plan_handle used in the next query

select query_plan from sys.dm_exec_query_plan(0x06000900217F40094041844E010000000000000000000000)
-- graphical plan was displayed by clicking on the query_plan data in SSMS

In this example, the plan_handle value is retrieved from the dm_exec_requests DMV which shows

executing session information. The handle is passed into the dm_exec_query_plan DMO to get the real

execution plan. In this case, a full table scan is being done as we suspected. If we were only reviewing

SMSS plan data, we may have dismissed the issue and referred the problem back to the development

team claiming the problem lies in the application tier. The execution plan from dm_exec_query_plan

quickly points to the full table scan on the DATA_OUT table.

Now that we’ve covered the theory behind this simple tuning process, I’d like to provide some practical

examples to illustrate the value of response time analysis in your SQL tuning process.

A White Paper by Confio Software

8

SQL Query Tuning for SQL Server, January 2011

© 2011

Tuning Exercise #1

The first sample SQL statement answers the question: “Who registered for the SQL Tuning class within

the last day?”:

SELECT s.fname, s.lname, r.signup_date

FROM student s

INNER JOIN registration r ON s.student_id = r.student_id

INNER JOIN class c ON r.class_id = c.class_id

WHERE c.name = 'SQL TUNING'

AND r.signup_date BETWEEN @BeginDate AND @EndDate

AND r.cancelled = 'N'

Review Execution Plan and Query Statistics

The execution plan was retrieved from the dm_exec_query_plan DMO while our sample SQL statement

was executing and the important portion of it is given below:

Learning to read the plan is outside the scope of this white paper, but in simple terms, start from the

right hand side to understand what SQL Server does first. In this case, two full table scans are performed

against the CLASS and REGISTRATION tables and there are 9,634 logical reads being performed.

Use Logical Reads Metric to Understand Improvements

Above I mentioned the number of logical reads the query is performing. This is an important piece of

data about the query execution because it provides the most fundamental metric about how much work

the query is doing to retrieve the results. Even if the query performs physical reads too, remember that

a logical read is performed for every physical read. Every time you execute the query, you will get the

same number of logical reads assuming no changes have been made. If changes are made, the logical

reads number may change and will provide an insight into the improvements.

Why not use simple execution times to measure a SQL statement? The problem with using time is that

it is greatly influenced by other processes running at the same time you are testing the query. This can

significantly impact the time a query takes to execute and thus give false impressions about possible

performance gains. Logical reads will not be affected in this way. The number of logical reads can be

A White Paper by Confio Software

9

SQL Query Tuning for SQL Server, January 2011

© 2011

retrieved by reviewing the total_logical_reads (total reads since it was compiled) and last_logical_reads

(reads from last execution) columns from the dm_exec_query_stats DMO. The command “SET

STATISTICS IO ON” can also be used to get this information when executing the query.

SQL Diagramming

I would like to introduce a technique to tune SQL statements correctly without the trial and error that I

was often faced with. The concept of SQL diagramming was introduced to me through a book entitled

SQL Diagramming by Dan Tow. For our purposes, I will explain the basics of the following SQL

diagram:

The diagram looks similar to an ERD diagram and to build it:

 Start with any table in the FROM clause and put it on paper (the easiest way to draw these

diagrams is by hand). In my case I started with the first table in the FROM clause named

STUDENT.

 Take the next table, which in my case is REGISTRATION, and place it either above or below the

existing tables based on the relationship. Since the REGISTRATION relates to the STUDENT table

uniquely, i.e. one row in REGISTRATION points to one row in the STUDENT table, I put it above

and draw an arrow downwards.

 Take the next table, CLASS - one row in REGISTRATION points to one row in CLASS so I put it

below REGISTRATION with another downward pointing arrow.

The next step is to further understand the criteria used in the query to limit the number of rows from

each of the tables. The first criterion to explore is anything in the WHERE clause that will limit the result

set from the REGISTRATION table. In this case the criteria is:

AND r.signup_date BETWEEN @BeginDate AND @EndDate

AND r.cancelled = 'N'

class .002 student

1

71

1

1332

.004 registration

A White Paper by Confio Software

10

SQL Query Tuning for SQL Server, January 2011

© 2011

To understand the selectivity, run a query similar to below against the table using the critiera while also

using real values for the @BeginDate and @EndDate parameters:

select count(*) from registration r

WHERE r.signup_date BETWEEN @BeginDate AND @EndDate

AND r.cancelled = 'N'

 Results – 8,221 / 1,687,980 (total rows in REGISTRATION) = 0.004 = 0.4% selectivity

The query returned 8,221 rows and, with simple division by the total number of rows in the table, we

get a value of 0.004 or 0.4%. Place this number on the diagram next to the REGISTRATION table and

underline it. This represents the selectivity of the criteria against that table.

The next table to review in the same manner is the CLASS table. The query to run becomes:

SELECT count(1) FROM class

WHERE name = 'SQL TUNING'

 Results – 2 / 1,267 (total rows in CLASS) = 0.001 = 0.1% selectivity

Place this in the diagram next to the CLASS table. The next table to explore is the STUDENT table, but

there are no direct criteria against this table, so no underlined number is placed next to that table.

The other numbers next to the arrows in the diagram are simple calculations based on average numbers

of rows that one row in a table references in the others. In this case, the REGISTRATION table refers to

exactly one row in the CLASS and STUDENT tables so the number 1 goes next to the bottom of the

arrows. One row in the CLASS table refers to on average 1,332 rows in the REGISTRATION table

(1,687,980 total rows REGISTRATION divided by 1,276 rows in CLASS) and one row in the STUDENT table

refers to on average 71 rows in REGISTRATION (1,687,980 / 23,768).

The diagram has now been completed for our example, however, Dan Tow goes into more detail than I

will include at this point.

Analyzing the SQL Diagram

Analyzing the SQL diagram begins by looking for the smallest, underlined number. In this example it is

0.001 next to the CLASS table. To limit the number of rows the query needs to process, starting here

will trim our result sets the soonest. If we can make SQL Server start with this table the query can be

executed optimally. When the query starts with the CLASS table for this query, it will read two rows and

then visit the REGISTRATION table to read 2,664 rows (2 * 1,332). From there it will read 2,664 more

rows from the CLASS table for a total of 5,330 rows (2 + 2,664 + 2,664). If the query started on the

REGISTRATION table first, it would read 8,221 rows and then 8,221 rows from the CLASS and STUDENT

tables for a total of 24,663 rows (3 * 8,221). Based on this data we can understand why starting on the

CLASS table is best for this query.

A White Paper by Confio Software

11

SQL Query Tuning for SQL Server, January 2011

© 2011

Tuning Based on SQL Diagrams

We know we want SQL Server to start with the CLASS table, but how do we do that? The easiest way is

to ensure an index exists and fits our criteria of “name = ‘SQL TUNING”. In this case that means the

NAME column of the CLASS table.

 create index cl_name on class(name)

The new execution plan is:

The number of logical reads was reduced from 9,634to 9,139 which represents a gain by using an index

to retrieve data from the CLASS table versus a clustered index scan. There is some improvement, but

not as much as we had hoped. The CL_NAME index is now used to find the two rows in the CLASS table

with a NAME=’SQL TUNING’. We achieved partial results but a full scan is still done against the

REGISTRATION table. Why would that be?

When we review the indexes on REGISTRATION we find one index named REG_PK that contains the

STUDENT_ID and CLASS_ID columns in that order. Since our query is hitting the CLASS table first it

cannot use this index that starts with STUDENT_ID and must perform a full scan. This index could be

modified to switch the columns around, but that could affect many other queries and may require

significant testing. In this case, since I know I need an index with a leading edge of CLASS_ID, I created

an index on just that column:

 create index reg_alt on registration (class_id)

A White Paper by Confio Software

12

SQL Query Tuning for SQL Server, January 2011

© 2011

The new execution plan is:

This query now performs 621 logical reads so we have made significant progress. However, something

called a “Key Lookup” is now being performed against the registration table. A Key Lookup, or Bookmark

Lookup, is used to retrieve additional needed data from the table that is not contained in the index. For

this query, that means the signup_date and cancelled columns need to be retrieved from the

REGISTRATION table for further filtering based on the query’s criteria. To fix this issue, a covering index

can be created that contains this data. Note the INCLUDE clause used to create the index:

 CREATE INDEX reg_alt ON registration(class_id) INCLUDE (signup_date, cancelled)

After creating this index, the number of logical reads has shrunk to 60 and represents a 99%

improvement in this query.

Getting it Right the First Time

Before utilizing the SQL diagramming technique, I would tend to focus on the execution plan and

attempt to reduce the cost of expensive steps in the plan. Based on the initial execution plan for this

query, I would have focused on the REGISTRATION table and most likely added an index on the

signup_date and cancelled columns, which by the way is what SSMS suggested too. There would have

been an improvement in logical reads by approaching the problem this way too. They would have been

reduced from 9,634 to 620 by creating the index mentioned above and the query would probably have

executed well enough for the customer. However, as we have seen, SQL Server would have been

required to read through more than four times the number of rows to get the same results and the

number of logical reads would still have been 10 times higher. SQL diagramming allowed me to get it

right the first time.

A White Paper by Confio Software

13

SQL Query Tuning for SQL Server, January 2011

© 2011

Tuning Exercise #2

The second sample SQL statement to tune provides a list of open orders for a customer.

SELECT o.OrderID, c.LastName, p.ProductID, p.Description,

 sd.ActualShipDate, sd.ShipStatus, sd.ExpectedShipDate

FROM Orders o

INNER JOIN Item i ON i.OrderID = o.OrderID

INNER JOIN Customer c ON c.CustomerID = o.CustomerID

INNER JOIN ShipmentDetails sd ON sd.ShipmentID = i.ShipmentID

INNER JOIN Product p ON p.ProductID = i.ProductID

INNER JOIN Address a ON a.AddressID = sd.AddressID

WHERE c.LastName LIKE ISNULL(@LastName,'') || '%'

AND c.FirstName LIKE ISNULL(@FirstName,'') || '%'

AND o.OrderDate >= DATEADD(day, -30, CURRENT_TIMESTAMP)

AND o.OrderStatus <> 'C'

The first question asked is whether the parameters @LastName and @FirstName are both provided

every time this query executes. In this case, at least one of them is required by the application which

could present serious problems. If only one parameter is provided, the query would perform a full table

scan on CUSTOMER every time. For example, if the @LastName parameter was provided but

@FirstName was not, the criteria would essentially turn into:

WHERE c.LastName LIKE 'SMI%'

AND c.FirstName LIKE '%'

The FirstName criteria of ‘%’ would cause a full scan to retrieve the results. A possible solution is to

rewrite the query to be constructed dynamically and include only the criteria in the query where the

parameter has a value. For example, if the @FirstName parameter is null, leave it out of the query

entirely. It is important to remember that tuning a SQL statement is not always about technical details,

many times understanding business rules and processes can help immensely with tuning.

A White Paper by Confio Software

14

SQL Query Tuning for SQL Server, January 2011

© 2011

Review Execution Plan and Query Statistics

The execution plan was retrieved from dm_exec_query_plan for our sample SQL statement and the

important portion of it is given below. The query is currently performing 10,159 logical reads.

The expensive steps from this plan are several full scans performed against fairly large tables named

ORDERS, ITEM and SHIPMENTDETAILS.

Create the SQL Diagram

Note: I typically draw SQL diagrams like the one below because they are much simpler and cleaner but

still provide the important details of selectivity.

A White Paper by Confio Software

15

SQL Query Tuning for SQL Server, January 2011

© 2011

In this example, the end-users are trained to input only the first three characters of a name. Because of

this, when calculating selectivity for the CUSTOMER table we should use “SMI%” as the criteria because

it is the most occurring first three characters of the LASTNAME.

SELECT COUNT(1) FROM Customer

WHERE LastName LIKE 'SMI%'

Results – 1,917 / 52,189 = .04

The next table to review is the ORDERS table. Whenever I have two criteria against a table in a query, I

calculate selectivity numbers for both combined as well as individually. I want to understand selectivity

of each to be able to create the best, most economical index. For this SQL statement I ran the following

queries:

SELECT count(1) FROM orders o

WHERE o.OrderDate >= SYSDATE - 30

AND o.OrderStatus <> 'C'

Combined Results – 0.005 = 0.5% selectivity

SELECT count(1) FROM orders o

WHERE o.OrderDate >= SYSDATE - 30

OrderDate Criteria Results – 0.08 = 8% selectivity

SELECT count(1) FROM orders o

WHERE o.OrderStatus <> 'C'

OrderStatus Criteria Results – 0.005 = 0.5% selectivity

These results show the ORDERDATE column selectivity is not near as good as the selectivity of the

ORDERSTATUS column individually. Also, when including both criteria, the selectivity matches the

results from using only the ORDERSTATUS column. Because of this, I would focus on that criterion alone

without ORDERDATE.

Tuning Based on SQL Diagrams

Since this is a non-equality criterion, adding an index on the ORDERSTATUS column will not help because

SQL Server will not use it. I also review data skew when I notice a status or flag type of column being

used in a query. For this column, here are a list of values and the number of rows that contain the

value:

A White Paper by Confio Software

16

SQL Query Tuning for SQL Server, January 2011

© 2011

Instead of leaving the criterion using <> and, based on the above data, the criteria could be rewritten as:

AND o.OrderStatus = 'I'

This is a little dangerous to do without discussions about the data with the applications group. A

problem can arise if the ORDERSTATUS column can have other values than listed above which would

break the new query’s logic. In this case after talking to the applications team, ‘I’ and ‘C’ are the only

two possible values so our new logic is sound. This also means that an index on ORDERSTATUS seems to

make sense. Including the OrderID and CustomerID column in this index, which are join criteria to the

Item and ShipmentDetails tables, also makes sense. If those columns were not included, an expensive

Key Lookup would most likely be performed on the Orders table so the joins could be accomplished.

CREATE INDEX order_status ON Orders (OrderStatus)

INCLUDE (OrderID, CustomerID)

The new execution plan is:

This query now performs 3,052 logical reads which is a significant improvement. There may still be room

for improvement, but I will stop here for this example. Again, SQL diagramming was instrumental in

identifying how to tune the query correctly the first time. Reviewing the execution plan shows that

there are still full table scans on the PRODUCT and SHIPMENTDETAILS table, so there probably is room

for additional tuning.

A White Paper by Confio Software

17

SQL Query Tuning for SQL Server, January 2011

© 2011

Summary

As Confio DBA, I get to work through database performance issues with hundreds of DBAs and

developers every year. There is one commonality amongst all these professionals: no one has time to

spare. Everyone wants to streamline processes and solve problems as quickly as possible and move on

to the next issue of the day. A simple, repeatable process for performance tuning is a valuable time

saver because you’ll get it right the first time.

1. Focus on the correct SQL statements

2. Utilize response time analysis

3. Gather accurate execution plans

4. Use SQL diagramming

About the Author

Dean Richards, Senior DBA, Confio Software

Dean Richards has over 20 years of performance tuning, implementation and strategic database

architecting experience. Before coming to Confio, Dean was a technical director for Oracle Corporation

managing technical aspects of key accounts including short and long-term technical planning and

strategic alliances. Specifically, Dean has focused his entire career on performance tuning of Oracle and

SQL Server environments. As a highly successful liaison between management and technical staff, Dean

has proven to be an effective collaborator implementing cutting-edge solutions.

About Confio Software

Confio™ Software is focused on database performance monitoring. Ignite 8 is a comprehensive database

performance solution for DBAs, IT management, and database application developers. Ignite 8

eliminates performance bottlenecks, improves application service, and reduces the cost of operations

for SQL Server, Oracle, DB2 and Sybase databases.

Confio Software

Boulder, Colorado, USA

(303) 938-8282

info@confio.com

www.confio.com

mailto:info@confio.com
http://www.confio.com/

