
11800 Ridge Pkwy., Suite 125, Broomfield, CO 80021
Phone: 877.722.8247 | Email: info@datavail.com
Website: www.datavail.comDATABASE SERVICES

BLOG POST
DATABASE SERVICES

SQL Server In-Memory tables – Where is data stored?

SQL Server In-Memory tables - Where is data stored?SQL Server 2014 introduced the concept of InMemory
OLTP which has been a lesser explored topic for many. Previously we saw how these InMemory tables can be
created and how one can access the same. Once the table is created, the syntax, TSQL construct and access
seems to be almost similar to how a normal table is created. The interesting aspect of using InMemory OLTP is
that it can be configured to be purely an in-memory tables or can be configured as in-memory durable tables.
The latter being the default behavior.

Isn’t it ironic that InMemory tables are also durable? One of the major questions asked by developers
implementing the same revolves around, where are these tables stored? How are entries written into them?
How can we know more about their architecture? All these are valid questions and this blog will try to demystify
some of these basic questions.

Understanding by code

The first step is to start creating our database with InMemory capability enabled. A Simple TSQL construct for
the same would look like:

CREATE DATABASE InMemoryDB
ON PRIMARY (NAME = [InMemoryDB_data],FILENAME = 'C:\IMDB\InMemoryDB.mdf'),
FILEGROUP [InMemoryDB_FG] CONTAINS MEMORY_OPTIMIZED_DATA
 (
 NAME = [InMemoryDB_dir],FILENAME = 'C:\IMDB\InMemoryDB_dir'
)
LOG ON (NAME = [InMemoryDB_log],
Filename = 'C:\IMDB\InMemoryDB_log.ldf',SIZE = 10240KB)
GO

The next logical step is to create an InMemory Optimized table in this database.

GO
CREATE TABLE InMemoryTable
(
ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000),
FirstName CHAR(25) NOT NULL,
LastName CHAR(25) NOT NULL
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

facebook/datavail twitter/datavail linkedin/datavail

GO

Note how we have specified the Memory Optimized table and Schema_and_data as part of durability. This
makes sure the data is persistent and can withstand any server reboots. Let us once again check the metadata
for this database.

GO
SET NOCOUNT ON
GO
SELECT *
FROM sys.master_files
WHERE database_id = DB_ID();
GO

You will see the InMemory table has been implemented as FILESTREAM and can be checked in the UI like
below. Select the database properties, Filegroups and the Memory Optimized Data section for details.

Where is my data?

Now that we have created the filegroups, we need to next explore the files that SQL Server creates as part of
InMemory tables. These files are called as Checkpoint files. They come in pairs called as DATA and DELTA files.
To check all the checkpoint files created, execute the following DMV:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
GO

I am running on an 8 core machine and have got 18 files – Data files are 128 MB in size each and Delta files are
8MB in size. Check for the active checkpoint files also note how the data and delta files are made as a pair:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
WHERE state= 1
GO

In the above diagram you can see the Data file has a Delta file as pair and vice versa. Next step is to insert few
rows, Delete a row and Update few rows into this table:

Use InMemoryDB
GO
SET NOCOUNT ON
GO
BEGIN TRAN
DECLARE @i INT
SET @i = 1
WHILE @i <= 1000
 BEGIN

INSERT INTO InMemoryTable
VALUES (@i, 'FirstName-'+CAST(@i as varchar(10)),'LastName-'+CAST(@i as varchar(10)))
SET @i = @i + 1
END
COMMIT TRAN
GO

DELETE from InMemoryTable
WHERE ID = 100
GO

UPDATE InMemoryTable
SET FirstName = FirstName
WHERE ID between 100 AND 150
GO

As you can see we have:
INSERTED: 1000 rows + (50 which was updated)

DELETED: 1 row + (50 which was updated)

UPDATED: 50 rows

An update in the system has to be considered as a DELETE followed by an INSERT. Now let us query the DMVs
to see what these files contain.

DECLARE @deleted_row_count INT;
DECLARE @inserted_row_count INT;
DECLARE @effective_row_percentage FLOAT

-- get the total deleted row counts by looking at active delta files
SELECT @deleted_row_count = SUM (deleted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 1

-- get total inserted row count by looking at active data files
SELECT @inserted_row_count = SUM (inserted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 0

SELECT @deleted_row_count 'deleted_row_count', @inserted_row_count 'inserted_row_count'
GO

As you can see this perfectly adds-up to the calculations we made just a while back.

Now that we understand how InMemory OLTP checkpoint files work, you can say with confidence where the
data is getting stored. SQL Server efficiently manages these files as it rolls over and created new files once they

get full. In this blog, we showed where data for InMemory gets stored and how one can query the same to get
vital information about InMemory tables.

Routine healthchecks have proven to improve database performance. Check out this white paper, Top SQL
Server Issues where we will share the top issues, the consequences of not taking action, and why consistent use
of a SQL Server Health Check in conjunction with ongoing database management can lead to improved
database environments and maximize the investment of time and resources.

If you are interested in learning more, please visit my other SQL Server blog posts as well as our latest SQL
Server blog: In-MemoryOLTP – New Index – Hash Index.

About the Author: Pinal Dave
Consultant to Datavail, Datavail

Pinal Dave is a Pluralsight Developer Evangelist and is working with Datavail and its SQL practice to expand
offerings. He has authored 11 SQL Server database books, 17 Pluralsight courses and have written more than
3,200 articles on the database technology on his SQL-focused blog Along with 11+ years of hands on experience
he holds a Masters of Science degree and a number of certi�cations, including MCTS, MCDBA and MCAD
(.NET). His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

BLOG

Phone: 877.722.8247 | Email: info@datavail.com | Website: www.datavail.com

SQL Server In-Memory tables – Where is data stored?

SQL Server In-Memory tables - Where is data stored?SQL Server 2014 introduced the concept of InMemory
OLTP which has been a lesser explored topic for many. Previously we saw how these InMemory tables can be
created and how one can access the same. Once the table is created, the syntax, TSQL construct and access
seems to be almost similar to how a normal table is created. The interesting aspect of using InMemory OLTP is
that it can be configured to be purely an in-memory tables or can be configured as in-memory durable tables.
The latter being the default behavior.

Isn’t it ironic that InMemory tables are also durable? One of the major questions asked by developers
implementing the same revolves around, where are these tables stored? How are entries written into them?
How can we know more about their architecture? All these are valid questions and this blog will try to demystify
some of these basic questions.

Understanding by code

The first step is to start creating our database with InMemory capability enabled. A Simple TSQL construct for
the same would look like:

CREATE DATABASE InMemoryDB
ON PRIMARY (NAME = [InMemoryDB_data],FILENAME = 'C:\IMDB\InMemoryDB.mdf'),
FILEGROUP [InMemoryDB_FG] CONTAINS MEMORY_OPTIMIZED_DATA
 (
 NAME = [InMemoryDB_dir],FILENAME = 'C:\IMDB\InMemoryDB_dir'
)
LOG ON (NAME = [InMemoryDB_log],
Filename = 'C:\IMDB\InMemoryDB_log.ldf',SIZE = 10240KB)
GO

The next logical step is to create an InMemory Optimized table in this database.

GO
CREATE TABLE InMemoryTable
(
ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000),
FirstName CHAR(25) NOT NULL,
LastName CHAR(25) NOT NULL
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

DATABASE SERVICES

GO

Note how we have specified the Memory Optimized table and Schema_and_data as part of durability. This
makes sure the data is persistent and can withstand any server reboots. Let us once again check the metadata
for this database.

GO
SET NOCOUNT ON
GO
SELECT *
FROM sys.master_files
WHERE database_id = DB_ID();
GO

You will see the InMemory table has been implemented as FILESTREAM and can be checked in the UI like
below. Select the database properties, Filegroups and the Memory Optimized Data section for details.

Where is my data?

Now that we have created the filegroups, we need to next explore the files that SQL Server creates as part of
InMemory tables. These files are called as Checkpoint files. They come in pairs called as DATA and DELTA files.
To check all the checkpoint files created, execute the following DMV:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
GO

I am running on an 8 core machine and have got 18 files – Data files are 128 MB in size each and Delta files are
8MB in size. Check for the active checkpoint files also note how the data and delta files are made as a pair:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
WHERE state= 1
GO

In the above diagram you can see the Data file has a Delta file as pair and vice versa. Next step is to insert few
rows, Delete a row and Update few rows into this table:

Use InMemoryDB
GO
SET NOCOUNT ON
GO
BEGIN TRAN
DECLARE @i INT
SET @i = 1
WHILE @i <= 1000
 BEGIN

INSERT INTO InMemoryTable
VALUES (@i, 'FirstName-'+CAST(@i as varchar(10)),'LastName-'+CAST(@i as varchar(10)))
SET @i = @i + 1
END
COMMIT TRAN
GO

DELETE from InMemoryTable
WHERE ID = 100
GO

UPDATE InMemoryTable
SET FirstName = FirstName
WHERE ID between 100 AND 150
GO

As you can see we have:
INSERTED: 1000 rows + (50 which was updated)

DELETED: 1 row + (50 which was updated)

UPDATED: 50 rows

An update in the system has to be considered as a DELETE followed by an INSERT. Now let us query the DMVs
to see what these files contain.

DECLARE @deleted_row_count INT;
DECLARE @inserted_row_count INT;
DECLARE @effective_row_percentage FLOAT

-- get the total deleted row counts by looking at active delta files
SELECT @deleted_row_count = SUM (deleted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 1

-- get total inserted row count by looking at active data files
SELECT @inserted_row_count = SUM (inserted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 0

SELECT @deleted_row_count 'deleted_row_count', @inserted_row_count 'inserted_row_count'
GO

As you can see this perfectly adds-up to the calculations we made just a while back.

Now that we understand how InMemory OLTP checkpoint files work, you can say with confidence where the
data is getting stored. SQL Server efficiently manages these files as it rolls over and created new files once they

get full. In this blog, we showed where data for InMemory gets stored and how one can query the same to get
vital information about InMemory tables.

Routine healthchecks have proven to improve database performance. Check out this white paper, Top SQL
Server Issues where we will share the top issues, the consequences of not taking action, and why consistent use
of a SQL Server Health Check in conjunction with ongoing database management can lead to improved
database environments and maximize the investment of time and resources.

If you are interested in learning more, please visit my other SQL Server blog posts as well as our latest SQL
Server blog: In-MemoryOLTP – New Index – Hash Index.

About the Author: Pinal Dave
Consultant to Datavail, Datavail

Pinal Dave is a Pluralsight Developer Evangelist and is working with Datavail and its SQL practice to expand
offerings. He has authored 11 SQL Server database books, 17 Pluralsight courses and have written more than
3,200 articles on the database technology on his SQL-focused blog Along with 11+ years of hands on experience
he holds a Masters of Science degree and a number of certi�cations, including MCTS, MCDBA and MCAD
(.NET). His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

SQL Server In-Memory tables – Where is data stored?

SQL Server In-Memory tables - Where is data stored?SQL Server 2014 introduced the concept of InMemory
OLTP which has been a lesser explored topic for many. Previously we saw how these InMemory tables can be
created and how one can access the same. Once the table is created, the syntax, TSQL construct and access
seems to be almost similar to how a normal table is created. The interesting aspect of using InMemory OLTP is
that it can be configured to be purely an in-memory tables or can be configured as in-memory durable tables.
The latter being the default behavior.

Isn’t it ironic that InMemory tables are also durable? One of the major questions asked by developers
implementing the same revolves around, where are these tables stored? How are entries written into them?
How can we know more about their architecture? All these are valid questions and this blog will try to demystify
some of these basic questions.

Understanding by code

The first step is to start creating our database with InMemory capability enabled. A Simple TSQL construct for
the same would look like:

CREATE DATABASE InMemoryDB
ON PRIMARY (NAME = [InMemoryDB_data],FILENAME = 'C:\IMDB\InMemoryDB.mdf'),
FILEGROUP [InMemoryDB_FG] CONTAINS MEMORY_OPTIMIZED_DATA
 (
 NAME = [InMemoryDB_dir],FILENAME = 'C:\IMDB\InMemoryDB_dir'
)
LOG ON (NAME = [InMemoryDB_log],
Filename = 'C:\IMDB\InMemoryDB_log.ldf',SIZE = 10240KB)
GO

The next logical step is to create an InMemory Optimized table in this database.

GO
CREATE TABLE InMemoryTable
(
ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000),
FirstName CHAR(25) NOT NULL,
LastName CHAR(25) NOT NULL
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

GO

Note how we have specified the Memory Optimized table and Schema_and_data as part of durability. This
makes sure the data is persistent and can withstand any server reboots. Let us once again check the metadata
for this database.

GO
SET NOCOUNT ON
GO
SELECT *
FROM sys.master_files
WHERE database_id = DB_ID();
GO

You will see the InMemory table has been implemented as FILESTREAM and can be checked in the UI like
below. Select the database properties, Filegroups and the Memory Optimized Data section for details.

Where is my data?

Now that we have created the filegroups, we need to next explore the files that SQL Server creates as part of
InMemory tables. These files are called as Checkpoint files. They come in pairs called as DATA and DELTA files.
To check all the checkpoint files created, execute the following DMV:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
GO

I am running on an 8 core machine and have got 18 files – Data files are 128 MB in size each and Delta files are
8MB in size. Check for the active checkpoint files also note how the data and delta files are made as a pair:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
WHERE state= 1
GO

In the above diagram you can see the Data file has a Delta file as pair and vice versa. Next step is to insert few
rows, Delete a row and Update few rows into this table:

Use InMemoryDB
GO
SET NOCOUNT ON
GO
BEGIN TRAN
DECLARE @i INT
SET @i = 1
WHILE @i <= 1000
 BEGIN

BLOG

Phone: 877.722.8247 | Email: info@datavail.com | Website: www.datavail.com

DATABASE SERVICES

INSERT INTO InMemoryTable
VALUES (@i, 'FirstName-'+CAST(@i as varchar(10)),'LastName-'+CAST(@i as varchar(10)))
SET @i = @i + 1
END
COMMIT TRAN
GO

DELETE from InMemoryTable
WHERE ID = 100
GO

UPDATE InMemoryTable
SET FirstName = FirstName
WHERE ID between 100 AND 150
GO

As you can see we have:
INSERTED: 1000 rows + (50 which was updated)

DELETED: 1 row + (50 which was updated)

UPDATED: 50 rows

An update in the system has to be considered as a DELETE followed by an INSERT. Now let us query the DMVs
to see what these files contain.

DECLARE @deleted_row_count INT;
DECLARE @inserted_row_count INT;
DECLARE @effective_row_percentage FLOAT

-- get the total deleted row counts by looking at active delta files
SELECT @deleted_row_count = SUM (deleted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 1

-- get total inserted row count by looking at active data files
SELECT @inserted_row_count = SUM (inserted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 0

SELECT @deleted_row_count 'deleted_row_count', @inserted_row_count 'inserted_row_count'
GO

As you can see this perfectly adds-up to the calculations we made just a while back.

Now that we understand how InMemory OLTP checkpoint files work, you can say with confidence where the
data is getting stored. SQL Server efficiently manages these files as it rolls over and created new files once they

get full. In this blog, we showed where data for InMemory gets stored and how one can query the same to get
vital information about InMemory tables.

Routine healthchecks have proven to improve database performance. Check out this white paper, Top SQL
Server Issues where we will share the top issues, the consequences of not taking action, and why consistent use
of a SQL Server Health Check in conjunction with ongoing database management can lead to improved
database environments and maximize the investment of time and resources.

If you are interested in learning more, please visit my other SQL Server blog posts as well as our latest SQL
Server blog: In-MemoryOLTP – New Index – Hash Index.

About the Author: Pinal Dave
Consultant to Datavail, Datavail

Pinal Dave is a Pluralsight Developer Evangelist and is working with Datavail and its SQL practice to expand
offerings. He has authored 11 SQL Server database books, 17 Pluralsight courses and have written more than
3,200 articles on the database technology on his SQL-focused blog Along with 11+ years of hands on experience
he holds a Masters of Science degree and a number of certi�cations, including MCTS, MCDBA and MCAD
(.NET). His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

SQL Server In-Memory tables – Where is data stored?

SQL Server In-Memory tables - Where is data stored?SQL Server 2014 introduced the concept of InMemory
OLTP which has been a lesser explored topic for many. Previously we saw how these InMemory tables can be
created and how one can access the same. Once the table is created, the syntax, TSQL construct and access
seems to be almost similar to how a normal table is created. The interesting aspect of using InMemory OLTP is
that it can be configured to be purely an in-memory tables or can be configured as in-memory durable tables.
The latter being the default behavior.

Isn’t it ironic that InMemory tables are also durable? One of the major questions asked by developers
implementing the same revolves around, where are these tables stored? How are entries written into them?
How can we know more about their architecture? All these are valid questions and this blog will try to demystify
some of these basic questions.

Understanding by code

The first step is to start creating our database with InMemory capability enabled. A Simple TSQL construct for
the same would look like:

CREATE DATABASE InMemoryDB
ON PRIMARY (NAME = [InMemoryDB_data],FILENAME = 'C:\IMDB\InMemoryDB.mdf'),
FILEGROUP [InMemoryDB_FG] CONTAINS MEMORY_OPTIMIZED_DATA
 (
 NAME = [InMemoryDB_dir],FILENAME = 'C:\IMDB\InMemoryDB_dir'
)
LOG ON (NAME = [InMemoryDB_log],
Filename = 'C:\IMDB\InMemoryDB_log.ldf',SIZE = 10240KB)
GO

The next logical step is to create an InMemory Optimized table in this database.

GO
CREATE TABLE InMemoryTable
(
ID INT NOT NULL PRIMARY KEY NONCLUSTERED HASH WITH (BUCKET_COUNT = 100000),
FirstName CHAR(25) NOT NULL,
LastName CHAR(25) NOT NULL
) WITH (MEMORY_OPTIMIZED = ON, DURABILITY = SCHEMA_AND_DATA)

GO

Note how we have specified the Memory Optimized table and Schema_and_data as part of durability. This
makes sure the data is persistent and can withstand any server reboots. Let us once again check the metadata
for this database.

GO
SET NOCOUNT ON
GO
SELECT *
FROM sys.master_files
WHERE database_id = DB_ID();
GO

You will see the InMemory table has been implemented as FILESTREAM and can be checked in the UI like
below. Select the database properties, Filegroups and the Memory Optimized Data section for details.

Where is my data?

Now that we have created the filegroups, we need to next explore the files that SQL Server creates as part of
InMemory tables. These files are called as Checkpoint files. They come in pairs called as DATA and DELTA files.
To check all the checkpoint files created, execute the following DMV:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
GO

I am running on an 8 core machine and have got 18 files – Data files are 128 MB in size each and Delta files are
8MB in size. Check for the active checkpoint files also note how the data and delta files are made as a pair:

SELECT *
FROM sys.dm_db_xtp_checkpoint_files
WHERE state= 1
GO

In the above diagram you can see the Data file has a Delta file as pair and vice versa. Next step is to insert few
rows, Delete a row and Update few rows into this table:

Use InMemoryDB
GO
SET NOCOUNT ON
GO
BEGIN TRAN
DECLARE @i INT
SET @i = 1
WHILE @i <= 1000
 BEGIN

INSERT INTO InMemoryTable
VALUES (@i, 'FirstName-'+CAST(@i as varchar(10)),'LastName-'+CAST(@i as varchar(10)))
SET @i = @i + 1
END
COMMIT TRAN
GO

DELETE from InMemoryTable
WHERE ID = 100
GO

UPDATE InMemoryTable
SET FirstName = FirstName
WHERE ID between 100 AND 150
GO

As you can see we have:
INSERTED: 1000 rows + (50 which was updated)

DELETED: 1 row + (50 which was updated)

UPDATED: 50 rows

An update in the system has to be considered as a DELETE followed by an INSERT. Now let us query the DMVs
to see what these files contain.

DECLARE @deleted_row_count INT;
DECLARE @inserted_row_count INT;
DECLARE @effective_row_percentage FLOAT

-- get the total deleted row counts by looking at active delta files
SELECT @deleted_row_count = SUM (deleted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 1

-- get total inserted row count by looking at active data files
SELECT @inserted_row_count = SUM (inserted_row_count)
FROM sys.dm_db_xtp_checkpoint_files
WHERE file_type = 0

SELECT @deleted_row_count 'deleted_row_count', @inserted_row_count 'inserted_row_count'
GO

As you can see this perfectly adds-up to the calculations we made just a while back.

Now that we understand how InMemory OLTP checkpoint files work, you can say with confidence where the
data is getting stored. SQL Server efficiently manages these files as it rolls over and created new files once they

BLOG

Phone: 877.722.8247 | Email: info@datavail.com | Website: www.datavail.com

DATABASE SERVICES

get full. In this blog, we showed where data for InMemory gets stored and how one can query the same to get
vital information about InMemory tables.

Routine healthchecks have proven to improve database performance. Check out this white paper, Top SQL
Server Issues where we will share the top issues, the consequences of not taking action, and why consistent use
of a SQL Server Health Check in conjunction with ongoing database management can lead to improved
database environments and maximize the investment of time and resources.

If you are interested in learning more, please visit my other SQL Server blog posts as well as our latest SQL
Server blog: In-MemoryOLTP – New Index – Hash Index.

About the Author: Pinal Dave
Consultant to Datavail, Datavail

Pinal Dave is a Pluralsight Developer Evangelist and is working with Datavail and its SQL practice to expand
offerings. He has authored 11 SQL Server database books, 17 Pluralsight courses and have written more than
3,200 articles on the database technology on his SQL-focused blog Along with 11+ years of hands on experience
he holds a Masters of Science degree and a number of certi�cations, including MCTS, MCDBA and MCAD
(.NET). His past work experiences include Technology Evangelist at Microsoft and Sr. Consultant at SolidQ.

