
11800 Ridge Pkwy., Suite 125, Broomfield, CO 80021
Phone: 877.722.8247 | Email: info@datavail.com
Website: www.datavail.comDATABASE SERVICES

BLOG POST
DATABASE SERVICES

Reducing the Wait for Garbage Collection

When we’re profiling application code, there’s one common problem in the Java operating environment that
has the potential to affect the entire application: Garbage Collection.

In code creation, Garbage Collection is a function of memory management used to eliminate memory allocation
issues and increase productivity. Although the process should free up memory in use, it sometimes creates more
problems than it solves. It can create latency and other performance issues.

Chuck Ezell, senior applications tuner at Datavail, explains:

When Garbage Collection happens, there are a lot of CPUs consumed. Everyone is waiting. All of the other
JVMs, processes, and the threading that’s going on within the JVMs will have to wait until the Garbage
Collection process is complete. It can cause a lot of slowness and it can happen across the entire application.
And if we’re not monitoring for that — if we have no way to profile our code to see if it’s a Garbage Collection
problem — then we are lost.

Using JDK Tools

Some of the tools in the Java Developer Kit — jstack, jstat, and jmap — are easy to use and are free. They can
be used to profile application code. These tools only run on the terminal and generate useful information, but
don’t retain any information. You can resolve this by creating a file of the raw data. Before you go to a new
session or revert to a different directory, you can easily move the raw data into a file.

Ezell explains his process:

I’ll name the file, I’ll give it a server name, I’ll give it a day. That way I can keep the history of what I’ve done.
There’s no analysis provided. It’s just the raw data. But it does provide running threads. You can see the memory
footprints of JVMs. You can also see Garbage Collection with jstat. You can actually pull live threads that allow
you to look at Garbage Collection in a live JVM, in a production environment.

One means to do this is to use jmap to see the memory footprint, then look at the ebb and flow of memory
allocation — which helps monitor Garbage Collection — in jstat. You can use it to look at Garbage Collection
and different arguments, or the old memory capacity. By adding a timestamp, says Ezell, you can sample and
discover what is occurring over time. This can be applied to a particular JVM to see what the Garbage
Collection process is doing to the virtual machine over time.

facebook/datavail twitter/datavail linkedin/datavail

Reactive, Not Proactive

These specific tools are reactive rather than proactive. You must be there when running a JDK tool and it has to
be run when there is a problem. Adds Ezell:

They are great tools for firefighting in a reactive situation. They don’t maintain any history or reporting. The
output is essentially what you see. It will help you answer questions and it will help you identify real problems
now.

Some other tools able to help monitor the process, but offering differing diagnostic capabilities, are HP
Diagnostics and AppDynamics. AppDynamics can profile code, for example, down to the thread stack and
exceptions without the need for instrumentation. It also works well with Splunk. You can also schedule
automatic and diagnostic sessions that will send you e-mail notifications if too many Garbage Collection events
are occurring.

This information should make those chores associated with diagnosing and resolving Garbage Collection issues
much easier.

If you need assistance or ongoing help with profiling your code, please contact Datavail to discuss a custom
solution for your enterprise.

About the Author: John Kaufling
Vice President and Practice Leader of Application Services, Datavail

John Kau�ing has more than 20 years of experience in the IT industry, including more than 12 years as an Oracle
EBS database administrator at Level 3 Communications and at Oracle Corporation. His specialties include
implementations, upgrades, performance tuning and extensive capability to support the product. John’s work
with Oracle apps database administration has included experience with SOA suite, Veritas Cluster, Oracle
DataGuard, Load Balancing from Resonate, Cisco and BigIP and extensive experience with Oracle self-service
applications and self-service framework technology.

BLOG

Phone: 877.722.8247 | Email: info@datavail.com | Website: www.datavail.com

Reducing the Wait for Garbage Collection

When we’re profiling application code, there’s one common problem in the Java operating environment that
has the potential to affect the entire application: Garbage Collection.

In code creation, Garbage Collection is a function of memory management used to eliminate memory allocation
issues and increase productivity. Although the process should free up memory in use, it sometimes creates more
problems than it solves. It can create latency and other performance issues.

Chuck Ezell, senior applications tuner at Datavail, explains:

When Garbage Collection happens, there are a lot of CPUs consumed. Everyone is waiting. All of the other
JVMs, processes, and the threading that’s going on within the JVMs will have to wait until the Garbage
Collection process is complete. It can cause a lot of slowness and it can happen across the entire application.
And if we’re not monitoring for that — if we have no way to profile our code to see if it’s a Garbage Collection
problem — then we are lost.

Using JDK Tools

Some of the tools in the Java Developer Kit — jstack, jstat, and jmap — are easy to use and are free. They can
be used to profile application code. These tools only run on the terminal and generate useful information, but
don’t retain any information. You can resolve this by creating a file of the raw data. Before you go to a new
session or revert to a different directory, you can easily move the raw data into a file.

Ezell explains his process:

I’ll name the file, I’ll give it a server name, I’ll give it a day. That way I can keep the history of what I’ve done.
There’s no analysis provided. It’s just the raw data. But it does provide running threads. You can see the memory
footprints of JVMs. You can also see Garbage Collection with jstat. You can actually pull live threads that allow
you to look at Garbage Collection in a live JVM, in a production environment.

One means to do this is to use jmap to see the memory footprint, then look at the ebb and flow of memory
allocation — which helps monitor Garbage Collection — in jstat. You can use it to look at Garbage Collection
and different arguments, or the old memory capacity. By adding a timestamp, says Ezell, you can sample and
discover what is occurring over time. This can be applied to a particular JVM to see what the Garbage
Collection process is doing to the virtual machine over time.

DATABASE SERVICES

Reactive, Not Proactive

These specific tools are reactive rather than proactive. You must be there when running a JDK tool and it has to
be run when there is a problem. Adds Ezell:

They are great tools for firefighting in a reactive situation. They don’t maintain any history or reporting. The
output is essentially what you see. It will help you answer questions and it will help you identify real problems
now.

Some other tools able to help monitor the process, but offering differing diagnostic capabilities, are HP
Diagnostics and AppDynamics. AppDynamics can profile code, for example, down to the thread stack and
exceptions without the need for instrumentation. It also works well with Splunk. You can also schedule
automatic and diagnostic sessions that will send you e-mail notifications if too many Garbage Collection events
are occurring.

This information should make those chores associated with diagnosing and resolving Garbage Collection issues
much easier.

If you need assistance or ongoing help with profiling your code, please contact Datavail to discuss a custom
solution for your enterprise.

About the Author: John Kaufling
Vice President and Practice Leader of Application Services, Datavail

John Kau�ing has more than 20 years of experience in the IT industry, including more than 12 years as an Oracle
EBS database administrator at Level 3 Communications and at Oracle Corporation. His specialties include
implementations, upgrades, performance tuning and extensive capability to support the product. John’s work
with Oracle apps database administration has included experience with SOA suite, Veritas Cluster, Oracle
DataGuard, Load Balancing from Resonate, Cisco and BigIP and extensive experience with Oracle self-service
applications and self-service framework technology.

