
WHITE PAPER

World’s Leader in Power Systems™ Software Solutions

ANALYZING IBM i
PERFORMANCE METRICS
IN EVERY INDUSTRY, BUSINESS-CRITICAL PROCESSES DEPEND

ON APPLICATION PERFORMANCE. INTERRUPTION OF REAL-TIME

PROCESSING, CUSTOMER SERVICE DELAYS, AND MISSED SLAs AND

DEADLINES ARE ALL PLAUSIBLE OUTCOMES WITH ALL-TOO-REAL

CONSEQUENCES. FORTUNATELY, IBM i AND THIRD-PARTY VENDORS

OFFER SIGNIFICANT POWER TO PREVENT SUCH DISASTER.

BY CHUCK LOSINSKI, DIRECTOR OF AUTOMATION TECHNOLOGY

The IBM i operating system is very good at supplying system administrators with
built-in tools for security, database management, auditing, and journaling. But
the operating system has another gem that often goes overlooked: its ability to
automatically, continuously, and efficiently collect performance data.

This white paper will examine critical system metrics for performance that admin-
istrators need to monitor and review for real-time performance issues and future
bottlenecks. It will also look at the commands associated with performance collection
services.

In the absence of a third-party solution, many elements of performance monitoring
not achieved by IBM i Navigator’s Performance Tool Library—which include real-
time alerting and system-specific intervals—can lead to sluggish performance,
interruption, and outages. This paper also outlines the most critical features
required of a third-party tool and how to incorporate them into your performance
monitoring.

Understanding IBM i Collection Services
Collection Services is an IBM tool set for gathering IBM i performance data in
intervals and storing it inside a collection object (object type *MGTCOL). These
objects store the raw performance data that reflects an interval of time and the
performance of the system, jobs, memory pools, and disk. This data can be used
to diagnose performance issues, plan for growth, or monitor performance so you
can be proactive with system-related tuning or application performance issues.

Configuring Collection Services
•	Use the command CHKPFRCOL to determine if Collection Services is turned on.
•	Use the prompted CFGPFRCOL command to see at which level of detail

performance collections are currently configured.

We recommend that you set this protocol profile setting to *STANDARDP. Additionally,
IBM recommends running performance collections continually as part of normal
operations. The command STRPFRCOL starts the monitoring process. You can also
use System i Navigator to start and stop the process.

Analyzing Collection Services
The command CRTPFRDTA processes the data in the *MGTCOL object and outputs it
to performance database files. Once in database files, this data typically requires use of
a third-party or IBM service, such as PM for Power Systems (formerly PM/400), to
analyze the data. You can see how PM/400 is configured by typing “GO PM400”
in a command line.

IBM i Navigator’s Performance Tools Library creates detailed and summary reports,
which can be viewed online for a fee. While the tool helps predict growth and identify
offending jobs, it does not help with real-time performance issues. For enhanced
performance collection and reporting, consider a third-party tool that alerts in real time.

Collecting Data: System Status & Disk Status
Most standard data from Collection Services is available on the screens for Work
with System Status (WRKSYSSTS) and Work with Disk Status (WRKDSKSTS). An
explanation of these metrics and their guidelines follows.

ANALYZING IBM i PERFORMANCE METRICS
BY CHUCK LOSINSKI, DIRECTOR OF AUTOMATION TECHNOLOGY

1

Work with System Status metrics (WRKSYSSTS):
CPU % Used – Analyze your CPU use over time and set a critical threshold level 5
to 10% above your peak “normal” level. You might also need to consider different
thresholds based on time of day. A high CPU utilization may not be a problem. For
instance, a high CPU with a low interactive response rate is good—there is good
utilization of the processor without impact on the end user. Generally, IBM
recommends an average CPU utilization of:
•	 50% for a single core
•	 70% for two cores
•	 85% for eight cores
•	 90% for 32 cores

Jobs in System – This includes active jobs, queued jobs, and completed jobs that
still have spooled files attached. Too many jobs in the system can cause delays
during IPL, when signing on to the system; it can also cause delays with certain
job-related commands.

System values that affect Jobs in System are QTOTJOB (initial total jobs), QACTJOB
(initial number of active jobs), QADLTOTJ (additional total jobs), QADLACTJ
(additional active jobs), and QMAXJOB (maximum number of jobs).

During IPL, the operating system allocates storage for each job. If it needs to allocate
additional memory for new jobs because the QACTJOB or QTOTJOB has been
exceeded, there will be a short delay. If you exceed the QMAXJOB value, new
work will not be able to start up on your system, so make sure this value is high
enough to handle the amount of jobs historically seen on your system. Keep your
joblogs and spooled files cleaned up to prevent this number from getting too high.

Permanent Address % Used and Temporary Address % Used – If this number is
increasing rapidly, it could mean that you have applications that are creating and
deleting objects at a rapid pace, which could affect performance. When the temporary
address percentage nears 60, consider doing an IPL to reset this value. (This may
require a change to a System Service Tools setting. The IBM default is to reset on
IPL only if the temporary address space is above 85%.)

DB Capability % - The maximum CPU utilization available for database processing
on this server. This value was originally added for Domino-dedicated systems but
was later added as a statistic to all systems. Generally, it indicates that there is
SQL activity going on.

There is a performance trade-off to collect this information. Per IBM, “System
support is changed in i 7.1 to not collect CPU utilization data specific to database
processing. Interfaces that report database CPU utilization data such as WRKSYSACT
now show a zero in the database CPU utilization fields.”

System ASP Size, System ASP % Used, and Total Storage – The amount of hard
drive disk space on your system versus the total and available amount in the
system ASP (auxiliary storage pool). The ASP storage threshold is defined in SST
(System Service Tools). If you have multiple auxiliary storage pools defined on your
system, you’ll want to use the WRKDSKSTS command for a better picture of the
disk space used.

Generally, performance is affected when you reach 80% of system ASP used; some
things stop working at 90% used. If you have a huge, multi-terabyte system, these
values will be higher. At 100% your system will automatically IPL and may also
delete all your spooled file reports.

2

Current and Maximum Unprotected Used – The current amount of storage used
for temporary objects and machine data (which can increase due to application
memory leaks); and the most used since the system was IPLed. These are reset
when the system is restarted. Generally, a value of 5% or less of the total ASP used
is considered to be acceptable for unprotected used.

DSPSYSSTS Memory Pool Values: System memory pools are numbered 1 to 64.
Typically, there are four predefined memory pools on your system:
•	 System Pool 1 - *MACHINE pool where the operating system and LIC reside.
•	 System Pool 2 - *BASE pool where all unused memory is placed and which

most jobs typically use as that is the default memory pool for most jobs.
•	 System Pool 3, System Pool 4, and Above - May change based on the order in

which the subsystems start; but typically system pool 3 is the *INTERACT pool
and pool 4 is the *SPOOL pool for print writers.

To prevent memory conflicts, previous administrators or application providers may
have created additional pools to segregate work on your system. Workloads that
are similar should be routed into shared pools (i.e. interactive subsystems into the
interactive pool, batch subsystems into a batch type memory pool). Pool size is
determined with a combination of system values, the WRKSHRPOOL screen, and
the CHGSBSD command for private pools. The built-in performance adjuster—if
turned on with system value QPFRADJ and set to a 2 or 3—will adjust memory
pools based on demand and threshold values that are set in system values and
the WRKSHRPOOL screen.

Machine Pool – The amount of memory allocated to this particular pool will
change based on the automated performance tuning adjustments (system value
QPFRADJ); or by other performance tuners such as Robot/AUTOTUNE. System value

QMCHPOOL is the minimum machine pool size. The performance adjuster has
been known to adjust the machine pool up to 40% of the total memory on the
system due to shared machine and operating system programs. The performance
adjuster will attempt to adjust this pool until the faulting rate is below 10. It is
critical that the faulting rate for this pool be kept below 10 faults per second (see
database and non-database faulting below).

Reserved Size (Memory Pool) – This value is calculated by the operating system, is
for system use only, and cannot be used by jobs. It is critical that enough memory
be allocated to the machine pool at the outset so that reserved size does not exhaust
it. The QMCHPOOL system value will be changed by the built-in performance adjuster
automatically so a manual adjustment should not be necessary.

As a starting point, we recommended these minimum pool sizes for systems with
10GB main memory or more:
•	 7-10% of total memory for *MACHINE (system pool 1)
•	 5-8% of total for *BASE memory pool (system pool 2)
•	 1 MB per interactive session for *INTERACT (system pool 3)
•	 1 MB for *SPOOL (system pool 4)
•	Custom batch memory pools should be large enough for 5 MB per batch job

at a minimum.

Web and Java applications have specific tuning requirements, but typical of those
applications are their multi-threaded characteristics. Those processes need special
handling and will cause the Max Active Thread requirements to go up. Use
WRKACTJOB OUTPUT (*PRINT) or WRKACTJOB F11-twice to see the thread count
for those jobs. The performance tuner, system value QPFRADJ, will adjust your pool
sizes and activity levels based on this type of activity as well.

3

Max Active Threads (by memory pool) – Sets the number of jobs that can have a
status of running on the WRKACTJOB panel and get an activity level at one time.
This setting is more art than science and can greatly affect the performance of the
work on your system.

Generally, allowing a large number of jobs to get an activity level from the CPU is
not good. Your throughput may actually be better by having a smaller Max Active,
allowing its work to get done, before moving on to new work. For instance, if your
interactive pool has a Max Active of 25, that means 25 users could hit the Enter
key at one time and any others would be input-inhibited until there was an opening
in the one of the 25 occupied activity levels.	

Paging Option – Also known as “expert cache,” this value can be set to *CALC for
all shared memory pools. System pool 1 is reserved for the operating system and
LIC and must remain as *FIXED.

*CALC uses an algorithm that calculates a read-ahead value that will bring blocks
of data into main memory of an increasingly large amount, which makes data
available for their respective programs to avoid “faulting”. A fault means data is
not in main memory and needs to be loaded from auxiliary storage. *CALC works
best for memory pools doing batch work.		

Database and Non-Database Faults – Also known as a page fault, database faults
are measured in faults per second. This value indicates that blocks of memory from
auxiliary storage are being read into memory. It may be programs (non-database
fault) or records from DB2 (database fault).

As mentioned in Paging Option, a high page fault rate will adversely affect system
performance. Acceptable faulting rates are not easily calculated without referring
to additional IBM documentation. Generally, a high faulting rate indicates poorer
system performance and can be adjusted by increasing Pool Size, decreasing Max
Active, or both. However, for system pool 1 (*MACHINE), IBM recommends a
faulting rate of no more than 10 for combined database and non-database faults.
Too many active jobs or threads and not enough memory means that programs
and data will continually be paged in and out of disk, which is known as “thrashing.”
As the name applies, “thrashing” can and will bring your processing to a virtual
standstill if you aren’t doing automated performance tuning.	

Active to Wait – Measured in transactions per minute, a job in the active state is
crunching data and actively using system CPU. If it goes into a short wait (Active
to Wait), such as for disk I/O, it keeps its activity level, which allows it to access
CPU time. When a job has a long wait for a system resource, such as a tape drive
response or input from a user, it loses its activity level, which allows other jobs to
access CPU time.

Wait to Ineligible – Jobs that use up their CPU time slice, have a long wait for a
system resource, or lose their activity level go to an ineligible status. They are prioritized
based on run priority and several other factors; eventually, when an activity level
opens up again, they get their turn for additional CPU cycles. The process repeats
until the job is complete. Generally, IBM says that if the Wait to Ineligible is always
zero, your activity level for that pool might be set too high and the pool not using
all its activity levels. Another rule of thumb: your Wait to Ineligible should not be
more than 20% of your Active to Wait value. If the ratio is too high, too many jobs
are being paged out to auxiliary storage and back in.

4

Active to Ineligible – Shows how often jobs are moved to the ineligible queue
without getting an activity level. This number should be as low as possible without
being zero. If it is always zero, then there is always an available activity level,
which means the pool’s activity level is set too high.

Work with Disk Status metrics (WRKDSKSTS):
Disk % Busy by Disk Unit – Values of 40% and below are considered to be acceptable
for Disk Busy. Greater than 40% may indicate that data has not been spread to
enough disk units; and that you may need additional disk units and disk arms to
ease the load.

Disk % Used by Disk Unit – Indicates how data is spread across your disk units.
Each disk unit is assigned to an ASP; as data is written to disk it is scattered evenly
across all units in the pool of disks in the ASP. ASP information for each disk unit
can be viewed from the WRKDSKSTS command (press F11).

Disk Average Response Time for a Disk Unit – It is difficult to recommend a
guideline for “good” disk response time. There are many factors including various
disk technologies, the ability for a disk to take advantage of cache, number of
reads versus writes, and an application’s tolerance to disk delays.

With current disk technology, an average response time of less than 5 milliseconds
is good; between 5 and 10 milliseconds is normal; above 10 milliseconds requires
analysis; and above 100 milliseconds is bad. As disk technology undergoes new
trends—such as the adoption of solid-state disk drives—these values will change.	

Disk Protection Status – If system performance is slow but your CPU usage is low,
check this column in the WRKDSKSTS information. If this status is DEGRADED or
FAILED the disk unit should be replaced; contact your hardware provider imme-

diately. You will also receive an informational message in the QSYSOPR message
queue with this information.

Additional disk drive statistics available from Collection Services:
•	Disk Unit Size (Disk Unit)	
•	Disk Data per Read (Disk Unit)		
•	Disk Data per Write (Disk Unit)		
•	Disk I/O Requests (Disk Unit)						
•	Disk Reads per Second (Disk Unit)
•	Disk Request Size (Disk Unit)		
•	Disk Writes per Second (by disk unit)

To establish an appropriate threshold, first collect the data for a metric over sev-
eral weeks. Then develop a baseline for the non-static values, such as Reads per
Second, and set your monitoring threshold a bit higher than the historical high.

Other performance factors supplied by Collection Services follow. They should be
checked if users are experiencing poor application performance while your system
is using only a small amount of CPU.
•	Maximum Job Seize/Wait Time
•	 Synchronous Lock Conflicts			
•	 System Seize Count		
•	 System Seize/Wait Time			
•	Asynchronous Lock Conflicts		
•	Average Job Seize/Wait Time

A seize is a wait point created for processes where many can access the same
object at the same time. A record lock is a specific wait point; waiting for a data
queue update is a wait point; waiting for an index to be updated on a database is

5

a wait point. The counts and times for all these different wait points are independently
recorded in the performance data files.

Think of seizes as the Licensed Internal Code’s (LIC’s) equivalent of locks. A seize
almost always occurs on or against an MI object (like a DB2 physical file member,
Data Queue, Program, Library, or User Profile). Seizes can conflict with locks and
can cause lock conflicts. For example, if there are many object creates and deletes
happening for a user, there will be many waits for the owning user profile to be
updated.

Seizing objects is a normal system function. It is a system control to allow only one
object access to another object. When there is a large amount of seize/wait time,
investigate the holder of the seize to find out why the job has held a seize on the
object for so long.

The ideal case is for small or no wait times, which indicate that jobs did not have
to wait to get a seize.

When Collection Services Isn’t Enough
While it serves as a powerful base for monitoring, Collection Services is not sufficient
to ensure the reliable performance of your system. Third-party tools build on that
base with more options for your performance collection. When searching for a
tool, look for ones that give you the ability to:

Establish unique collection intervals for each system. A development box, for
example, will not need collection nearly as often as a production box. If your tool
doesn’t let you establish a longer interval, you will receive unnecessary information
and degrade performance.

Dictate the level of detail in your statistics. Analyzing performance metrics is
impossible without the right information.

Establish thresholds on data. Thresholds are central to performance collection.
Without thresholds, you run the same risk of overuse as someone who doesn’t
monitor. Smart use of thresholds can save valuable resources and prevent system
firefighting.

Alert in real-time when thresholds are exceeded. Real-time alerts are the companion
to smart thresholds. Without alerting, thresholds are powerless—the operator
must know about a problem to be able to address it.

Create graphs, dashboards, and reports. Rich interfaces animate data in a way that
is easy to understand and is useful for reports.

Consolidate data from multiple systems into a central location for reporting and alerting.

The ideal tool will also provide adequate support that is available when operators
need it. While guides like this white paper provide operators with general guidelines,
support staff for the tool may need to help you configure settings in more detail to
fit your system. Ideally, support should be available 24 hours a day, 7 days a week
to deal with issues and questions whenever they might arise.

Consequences of Inadequate Monitoring
Inadequate monitoring can produce a range of outcomes from sluggish performance
to interruption and outages. In every industry, business-critical processes depend
on application performance. Interruption of real-time processing, customer service
delays, and missed SLAs and deadlines are all plausible outcomes with all-too-real
consequences.

6

Fortunately, IBM i and third-party vendors offer significant power to prevent such
disaster. Robot/NETWORK, the performance monitoring solution by Help/Systems,
gives you the ability to establish, on unique collection intervals, multiple thresholds
for performance and real-time alerts when they are exceeded. Its Performance
Center offers both drill-down capacity with summary tabs and customizable dash-
boards, graphs, and reports to animate current and historical data. It also brings
data across IBM i to a central location for reporting and alerting.

Conclusion
It is essential that your systems administrators have Collection Services running
and that they know how to maintain it. The benefits of monitoring your performance
data—analyzing application performance, managing by exception, and planning
for the future—are too great to leave the feature unused. The consequences of lax
monitoring are equally compelling: jeopardized deadlines, missed SLAs, interruption
of real-time processing, customer service delays, and any number of disaster scenarios
that disrupt your business and hurt your reputation.

For More Information
Call us at 1-800-328-1000 or email info@helpsystems.com to set up a personal
consultation to review your current setup and see how the Robot products can
help you achieve your automation goals.

7

©Help/Systems, LLC All trademarks and registered trademarks are the property of their respective owners. APM0912

www.helpsystems.com	 |	 +1 (952) 933-0609	 | info@helpsystems.com

World’s Leader in Power Systems™ Software Solutions

