Navigational Agency Modulates Neural Representations of Spatial Environments Yi-Chuang Lin¹, Ya-Ting Chang¹, Charlotte Maschke², Joshua Oon Soo Goh¹ ¹National Taiwan University, Taipei, Taiwan. ²Technical University Dresden, Dresden, Germany

Introduction

- Spatial navigation (SN) involves forming accurate neural representations of the environment¹ usually with movement actions that involve making navigational decisions².
- However, how navigational agency in SN modulates neural spatial representations remains unclear.
- We evaluated the effects of navigational **decision making** (DM) on SN-related neural responses under conditions of internally (Free) vs. externally (Tour) generated navigational steps.

Methods

- 21 Participants: 23.7±2.3 yrs old, 11 females.
- **SN Task**: Participants underwent SN both with and without DM in an fMRI design task, and were required to learn and later retrieve the locations of 12 goals in a virtual map.
 - Learning Phase: Under SN with DM (Free), participants were allowed to navigate freely, while under SN without DM **(Tour)**, only guide videos were presented.
 - Retrieval Phase: Participants were asked to point out the goal's direction, distance, and navigate to the goal.
- 2 Virtual Mazes: Each maze consistutes 12 goal shops, 13 junctions, 3 barriers, 47 blocks, and number of steps to goal from 6 to 25.
- 8 EPI Runs: voxel size $2.8 \times 2.8 \times 3$ mm, FOV = 220×220 mm, 38 axial slices, matrix size 78x78, TR = 2.4 s.

Reference

¹Bowman, D. A., Davis, E. T., Hodges, L. F., & Badre, A. N. (1999). Maintaining spatial orientation during travel in an immersive virtual environment. Presence, 8(6), 618-631.

²Chrastil, E. R., & Warren, W. H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of experimental psychology: learning, memory, and cognition, 39(5), 1520.

Different Learning Pattern in Free vs. Tour

Tour

Run 3

Overall Better Performance in Free vs. Tour

Navigational Failure

No. of Steps to Goal

Acknowledgement

This work was supported by the Ministry of Science and Technology of Taiwan, under Contract MOST 107-2410-H-002-124-MY3. The work of MRI was supported by Taiwan Mind & Brain Imgaing Center, TMBIC.

Distance Judgement

Free Tour

- Direction Error Rate: (Answer Correct Answer)/180*100(%).
- Distance Error Rate: (Answer Correct Answer)/Correct Answer*100(%).
- * p < .05, ** p < .01, *** p < .001
- Distance judgement and navigation were better in Free vs. Tour despite less places were covered in Free during learning.

Contact Information

Yi-Chuang Lin: gracelin029@gmail.com Ya-Ting Chang: funkyduedue@gmail.com Charlotte Maschke: Charlotte.Maschke@gmx.de Joshua Oon Soo Goh: joshgoh@gmail.com

Conclusion

- better performances.
- map locations.

Brain and Mind Laboratory

http://gibms.mc.ntu.edu.tw/bmlab/ Graduate Institute of Brain and Mind Sciences, National Taiwan University College of Medicine. Rm. 1554, 15F., No.1, Sec. 1, Ren'ai Rd., Zhongzheng Dist., Taipei City 100, Taiwan (R.O.C.) TEL: +886-2-23123456 ext 88068

• Navigational DM, manipulated as internally generated navigational steps (Free), enhances agency in SN, and involves forming more accurate spatial representations with overall

• Neural responses revealed distinct spatial representations while passing different landmarks in the map during both learning and retrieval between SN with and without DM. • Our findings showed that DM altered hippocampal and temporal processing of spatial distances during access to