
ISCs > 0.05, p <.05, FDR corrected 

Background
It is often assumed that the observer’s brain decomposes the sequential structure of human action 
into a series of hierarchical representations, corresponding to these different levels, and each repre-
sented within a particular brain network (Grafton & de C. Hamilton, 2007; Lingnau & Downing, 2015) 
  
Reconstructing human movement from static input produces body-specific percepts of movement 
speed and duration (Orgs, Bestmann, Schuur, & Haggard, 2011) and activates primary motor cortex as 
evident in both PET (Stevens, Fonlupt, Shiffrar, & Decety, 2000) and fMRI studies (Orgs et al., 2016). 

In EEG frequency tagging, stimuli are presented periodically to induce periodic responses in the EEG  
(Norcia et al., 2015), i.e.  to dissociate the perception of musical pulses from the perception of 
lower-frequency beats and meters (Chemin, Mouraux, & Nozaradan, 2014; Nozaradan, Peretz, & 
Mouraux, 2012).

Can we use frequency tagging to dissociate body and movement processing 
during apparent biological motion perception?

Discussion 
Frequency tagging of apparent biolopical motion dissociates processing of static and moving 
bodies with distinct occipito-central and occipito-temporal topographies (Orgs et al., 2011, 2016)

Frequency tagging reveals neural entrainment to the visual rhythm of apparent movement, similar 
to the entrainment to musical beat and meter (Nozaradan et al., 2012).

Body Specificity? Movement synchrony of multiple agents and inversion modulate neural re-
sponse (Cracco, Lee & Orgs, see Poster D113).

Stimulus or stimulation frequency? Same pattern of results for a base rate of 7.5 Hz 
(Cracco, Lee & Orgs, see Poster D113).
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Participants
N = 10, 9 females, mean age = 22, range 
= 19-26). 

EEG Recording and Preprocessing
128 Ag/AgCl active electrodes Biosemi. 
Sampling rate 512 Hz. Offline Bandpass 
filter0.1 – 100 Hz. ICA Artifcat Rejection. 
Average reference of all electrodes. 96  s 
segments. FFT

Frequency analysis 
Sum of first 10 harmonics (SNS) with z > 
2.32, p < 0.01, 1-tailed) for base rate, full 
cycle and half cycle response (Retter & 
Rossion, 2016) .

Four 5-electrode clusters were selected 
by averaging the topographies of each 
response across all participants and con-
ditions (Luck & Gaspelin, 2017). 

 

Methods 

Experimental Design
Fluent, non-fluent and random sequences of 7 body pos-
tures, with three levels of sequential structure:

Image presentation frequency. Base Rate 10Hz. 
Body posture repetition. Full cycle 10/12 Hz 
ide-to-side movement. Half cycle 10/6 Hz

Results

Frequency spectra across all three experimental condi-
tions. Signal-to-noise ratio (SNR  in the three conditions 
across the 20 electrodes of interest.

Only fluent and non-fluent sequences neural responses 
at full and half cycle frquencies and harmonics.

Sequence: F(2,18) = 25.2, p<.001, ηp2 = .74
Location: F(1.58,14.25) =42.57, p<.001, ηp2 = .83

Sequence: F(2,18) = 52.4, p<.001, ηp2 = .85
Location: F(2,18.2) = 24.9, p<.001, ηp2 = .73
Sequence*Location: F(2.6,23.4 = 20, p<.001, ηp2 
= .69 

Sequence: F(2,18) = 169.53, p<.001, ηp2 = .95
Location: F(1.5,13.7) = 13.8, p<.001, ηp2 = .61
Sequence*Location: F(6,54) = 11.8, p<.001, ηp2 = 
.57 


