Silence in the brain: An EEG study of expressive silence in individual and joint musical action

CENTRAL EUROPEAN UNIVERSITY \qquad Anna Zamm ${ }^{1}$, Stefan Debener², Ivana Konvalinka ${ }^{3}$, Günther Knoblich ${ }^{1}$, Natalie Sebanz ${ }^{1}$
${ }^{1}$ Central European University, Social Mind and Body Lab, Budapest, HU ${ }^{2}$ University of Oldenburg, Neuropsychology Lab, Oldenburg, DE ${ }^{3}$ Technical University of Denmark, DTU Compute, Lyngby, DK

CARA OSSIETOKY universität

Introduction

\checkmark Silence is an integral feature of auditory-motor communication:
Musicians \& speakers often pause between phrases
\checkmark How do partners in auditory-motor interaction coordinate the duration of pauses to ensure seamless interaction?:

Partners may simulate \& predict one another's actions ${ }^{1}$, or modify their own actions (e.g. speed actions, reduce variability). ${ }^{2}$
What are neural correlates of action preparation during pauses in auditory-motor interaction?:
Cortical beta oscillations ($13-30 \mathrm{~Hz}$) reflect action preparation in other tasks ${ }^{3}$, may reflect level of certainty about upcoming actions. ${ }^{4}$
\checkmark We address these questions in the context of music performance.

Design \& Methods

N $=40$ pianists (20 pairs), >6 yrs piano training, right-handed

Design \& Procedure: 2 Performance Tasks Pianists instructed that pauses should be expressive, intuitive, unique

> (1) Solo
> Perform melody alone (right hand, 5 trials)
(2) Duet

Perform melody w/partner (right hand, octave unison, 5 trials)

Data acquisition: 32-ch EEG data were acquired per subject using 2 BrainAmp DC amplifiers (BrainProducts GmbH, DE), ref=FCz, while pianists performed on MIDI keyboards
EEG preprocessing: ICA artefact correction for eye blinks/movements, re-referenced to linked mastoids, $13-30 \mathrm{~Hz}$ filter, epoched relative to pause onsets (-1-6s), divided into deciles

- Behavioural DVs: Pause durations, Duet asynchronies
- EEG DVs: Beta ERD\% (proportional difference from baseline amplitude, baseline $=-.5-0 \mathrm{~s}$), computed for pause Time Windows (deciles)

Results

Mean pause durations by Mean duet pause duration vs. Performance Task mean duet asynchrony

Performance Task

Mean Beta ERD\% during musical pauses

Linear Mixed Effects Model Predicting Beta ERD\%
Sig. Effects: $(p<.05)=$ Time Window, Pause Duration, ROI*Timewindow ROI $=$ Central (C3, C4, Cz) \& Parietal (P3, P4, Pz, P7, P8)
Significance levels computed using Satterthwaite's method

References

\checkmark Musical silence represents challenge to interpersonal coordination: Larger asynchronies for post-pause tones relative to other tones
\checkmark Partners overcome this challenge by reducing pause durations: Pauses shorter on average in Duets than Solo performance Shorter pauses associated with lower asynchronies for post-pause tones

\checkmark Beta ERD\% reflects action preparation during pauses:

Beta ERD\% shows classic desynchronization that anteriorizes; Shorter pauses show enhanced ERD > may facilitate action readiness
${ }^{1}$ Kourtis, D., N. Sebanz, and G. Knoblich. 2013. "Predictive representation of other people's actions in joint action planning: An EEG study." Social Neuroscience 8 (1): 31-42.
${ }^{2}$ Vesper, Cordula, Robrecht P. R. D. Van Der Wel, Günther Knoblich, and Natalie Sebanz. 2011."Making oneself predictable: Reduced temporal variability facilitates joint action coordination." Experimental Brain Research 211 (3-4): 517-30.
${ }^{3}$ Engel, A. K., \& Fries, P. (2010). Beta-band oscillations-signalling the status quo?. Current opinion in neurobiology, 20(2), 156-165.
${ }^{4}$ Tzagarakis, C., Ince, N. F., Leuthold, A. C., \& Pellizzer, G. (2010). Beta-band activity during motor planning reflects response uncertainty. Journal of Neuroscience, 30(34), 11270-11277.

