Gamma bursts length in the DLPFC predicts memory scan time in Sternberg task

Brzezicka A^{1,3}., Kamiński J^{1,4}., Mamelak AN¹., Rutishauser U^{1,2,4}

¹Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, California, USA. ²Department of Neurology, Cedars-Sinai Medical Center, Los Angeles, California, USA. ³Department of Psychology, University of Social Sciences and Humanities, Warsaw, Poland. ⁴Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California, USA

Introduction

Comparing incoming stimulus to the content of the memory is a fundamental function of σ a cognitive system. In 1966 Sternberg 🖁 👧 proposed that scanning short-term memory for a target has a form of an exhaustive serial search (Sternberg, 1966) and increases by 38 ms for each additional element in the memory. Based on this discovery theoretical works suggested gamma oscillations as a neural mechanism for the "memory 🛃 400 scanning" process. Here we wanted to test gamma oscillations involvement in the memory scanning during Sternberg task.

Method

SUBJECTS AND TASK

We performed intracranial recordings in 13 neurosurgical, epileptic patients (14 sessions). We recorded local field potential (LFP) signals from depth electrodes implanted in DLPFC during a modified Sternberg task (Fig. 1) with three levels of memory load and pictures as a study material (Kaminski et al, 2017, Brzezicka et al., 2019).

Fig. 2. Overview of anatomy. A. We identified 50 DLPFC contacts with average MNI coordinates X: 44; Y: 28; **Z: 24.** B. Exemplary DLPFC contact in an individual brain. *MFG: medial frontal gyrus; ifs: inferior frontal sulcus; sfs: superior frontal sulcus*

Founding: The McKnight Foundation and NIMH (R01MH110831)