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Overview

Methods

Fig. 2. Experimental methods. a. Participants lay in the scanner for ~10 minutes while functional data 
were collected. b. Participants were randomly assigned to1 of 4 experimental conditions.  The experi-
mental conditions varied systemically in cognitive “richness.” In the intact, paragraph-scrambled, and 
word-scramble conditions, participants listened to an (intact or scrambled) audio recording of the 
story Pie Man by Jim O’Grady. We applied HTFA (Manning et al., 2018) to obtain 700 node activities for 
every participant.  c. We randomly assigned participants in each condition to two groups. We applied 
dimensionality reduction (Incremental PCA) for each group. d. We then compared the groups’ activity 
patterns (using Pearson correlations) to estimate the story times each corresponding pattern using 
more and more principle components. 

Results: part 2

Summary- 85 participants in an fMRI study listened to a 10 minute story with di�erent listening 
conditions: intact, paragraph-scrambled, word-scrambled, as well as rest (Simony et al., 
2006). 

- Assessed model with cross validated timepoint decoding using more and more princi-
ple components.
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Fig 7. Decoding accuracy by number of components for each third of the scan time.  We repeated the same analysis in Fig 4. 
but breaking the scan time for each condition into 3 intervals. 

- What is the relationship between the richness of  thoughts and the complexity of brain 
patterns? 

- To understand the 'dimensionality' of the neural patterns, we trained classi�ers using 
more and more principle components to decode. 

We tested two hypotheses:

1) As our thoughts become more complex, they supported by more complex brain pat-
terns, and require more components to decode.  

2) When are thoughts are deeper and more complicated, units of neural activity carry 
more information, and would require fewer components to decode.

Fig 6.    In�ection points by network.  a. Similar to Fig 5., we limited the brain hubs by network  (using the Yeo et al. (2011) parcel-
lation) and arranged them in increasing order relative to the intact condition.  b. and c.  For the total time in the intact condition, 
we are projecting the relative in�ection points  (b) and corresponding  number of components ( c) onto the cortical surface 
(Combrisson et al., 2019) .  d. The network parcellation de�ned by Yeo et al. (2011) is displayed on the in�ated brain maps. The 
colors and network labels serve as a legend for a. and d.   
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Fig 5. Explanation of in�ection metric.  First the we �t a sigmoid function to the decoding accuracy by number of components.  
Second, we found where the second derivate is both positive and less than .0001. Last, we then plot that in�ection point as a 
single metric to capture the slope and asymptote of the curve. 

Results: part 1 

Fig 1. Visual analogy for neural compression.   
Here are 2 images of pies, one more complex 
than the other.  a. It takes fewer components to 
reach the same percent variance explained in the 
less complex pie, which corresponds to higher 
compression.   b. However, with very few compo-
nents, similar variance is explained in both pies.  
c. Plots the cumulative explained variance for 
more and more components. 
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a. Fig 8. Quantifying changes in 
decoding accuracy  across 
time. a.  We calculated the 
slope of decoding accuracy, 
by �tting a regression line for 
each component/condition 
for each third.   b.  We also re-
peated the analysis in Fig 5. to 
obtain the in�ection point for 
each condition and for each 
third.   
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- Using more and more principle components, how well can we decode? 

- As complexity of the stimuli increases, decoding accuracy increases.  

Fig 3. Decoding accuracy by number of components.  
Ribbons of each color display cross-validated decod-
ing performance for each condition (intact, paragraph, 
word, and rest).  Decoders were trained using increas-
ingly more principle components and displayed rela-
tive to chance (red line).

2.
 Limit f”(x)       0    

- As complexity of the stimuli increases, more components are required to reach peak decoding accuracy. 

- As complexity of the stimuli increases, need fewer components to decode the same amount.  

Fig 4. Fixed decoding accuracy by number of compo-
nents.  We zoom in on the plot shown in Fig. 3 and 
add a line denoting �xed decoding accuracy (.05).  We 
plot where the intact, paragraph, and word conditions 
intersect.

- As complexity of the stimuli increases, decoding accuracy increases with higher cognitive areas. . 
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- If there is some understanding of the narrative that accumulates over time, we should be able to see that 
change.  

- Increases in decoding accuracy with the same number or fewer components for more complex, cognitively 
rich, conditions. 

- Decreases in decoding accuracy for the word-scrambled and rest condition.  

- We trained classi�ers using more and more principle components to decode, and compared across condi-
tions with varying degrees of cognitive richness. 

- We found that as listening conditions become more cognitively rich,  decoding accuracy increased.  

- Also, decoding accuracy increased as understanding of the narrative accumulated over time,  in more com-
plex listening conditions. 

- Decoding accuracy also increased in higher cognitive areas, in more complex listening conditions. 

- We found that  as story listening conditions become more complex, more components are required to 
decode.  

- We also found we could  decode better with more impoverished data when there is the underlying structure 
of the narrative providing more cognitive richness. 

- We posit that as the complexity of our thoughts increases, neural compression decreases.  However, as our 
thoughts become deeper and richer, more reliable information is available at higher neural compression.
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