
•   Interleaving is bene�cial for improving general knowledge, whereas 
blocking is better for improving speci�city and learning of details.

•   Category learning can change perception such that same-category 
exemplars appear more visually similar.

• Psychological embeddings reveal that the interleaving benefit is driven 
by increasing between-category distance and discriminability.

•   We predict learning category groupings will reduce variance among 
same-category exemplars.

•   We predict the interleaving bene�t is driven by increasing distance 
between categories, which enhances category discriminability. 
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What drives the increase in perceived similarity for same-category exemplars?

Interleaving bene�ts generalization and general recognition, 
blocking improves detailed recognition
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METHOD
Subjects: Recruited via Amazon Mechanical Turk (N=101) and UT Psych pool (N=246)
Stimuli: Landscape paintings from 6 artists (categories) × 12 unique paintings per artist 
Design: Learning sequence (blocked vs. interleaved) manipulated between-subjects
Learning Sequences: study blocked by category, or interleaved across categories
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Between-Category Discriminability

Interleaved training increases between-category discriminability
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Items judged as more visually similar
are represented as being closer
together in the embedding space.
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Participants judge exemplars from the same-category as 
being more visually similar after interleaved training
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Which image is more similar to the center image?

same category
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BACKGROUND
Category learning paradigms using naturalistic stimuli have found that interleaving 
exemplars across categories during training (rather than blocking by category) leads to 
superior category learning1,2,3. 

Behavioral paradigms have suggested that the interleaving bene�t is driven by increased 
between-category discrimination and di�erentiation2,3.

Using a cognitive model that infers feature representations from similarity judgments, 
referred to as psychological embedding, we quanti�ed how learning-related changes in 
perceptual similarity di�er by training sequence4,5,6.

PROCEDURE
Similarity Judgments: Pick images most visually similar to center (query) image
Learning Phase: Study 36 painting+location pairs to learn artist styles
Generalization Test: Categorize 6 new paintings per artist (36 trials)
Detailed Recognition Test: For half of studied paintings, identify location 
Memory Test: For half of studied locations, identify artist paired w/ that location 
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Participant Samples:
Pre-judgments only (Mturk): N=101
Full procedure (pre+learn+post): N=99
Learning + post-judgments: N=147
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