

¹York University, Toronto, Canada; ²Rotman Research Institute at Baycrest Hospital, Toronto, Canada, ³Department of Psychology, University of Toronto, Canada

INTRODUCTION

Background

- **Pattern separation**: A memory process whereby highly similar stimuli are encoded in non-overlapping representations
- \rightarrow typically studied in the visual domain with previously known stimuli (e.g., objects)
- Mismatch negativity (MMN): An event-related potential (ERP) indexing the brain's perceptual discrimination
- \rightarrow typically studied in the auditory domain with abstract sounds (e.g., pure tones)
- \rightarrow Humans can detect novelty within hundreds of ms, as measured by the MMN

Theory

• **Predictive error**: mechanisms of hierarchical inference, such as predictive error, are responsible for the MMN and also facilitate pattern separation

Question

- Although similar processes may support MMN and pattern separation, little attention has been paid to how they are correlated
 - \rightarrow to what extent does our capacity to discriminate auditory inputs, as measured by the MMN, influence mnemonic discrimination of long-term memories?

METHODS: Participants & Stimuli

Participants

• 31 young adults (YA), age range 18–32, 18 female

Stimuli

- Six novel auditory sound patterns: non-melodic and non-semantic
- Five of the six comprised of the same five 100-ms tones arranged in different order → Foil micropattern pitched lower
- Study micropatterns: Standard and Deviant
- Test micropatterns: Standard and Deviant, as well as three Lures and one Foil

Mismatch Negativity (MMN) Predicts Pattern Separation

Deena Herman¹ and Stevenson Baker¹, Jaime Cazes¹, Claude Alain^{2,3}, Shayna Rosenbaum^{1,2}

METHODS: Study phase

Passive listening (25 minutes):

- Participants watched a muted movie while listening to random presentations of Standard and Deviant micropatterns
 - → Event-related potentials measured to determine the existence and strength of an MMN signal

RESULTS: Study phase

Average frontal-central pole (FCz) ERPs in response to the standard (blue) and the deviant (red) micropatterns. The dotted black line indicates the MMN waveform.

CLARA source analysis. Red and yellow shading represents areas of the brain at this latency where deviant micropattern activity is significantly greater (P<.001) than standard micropattern activity.

Methods: Test phase

- The six micropatterns (two old, three lures, one foil) were presented ten times each over the course of the test phase, for a total of 60 trials, in randomized order
- Participants indicated via a button press whether or not they heard the tone while watching the movie

Test Phase

• Evaluation of participants' recognition memory

RESULTS: Test phase

CONCLUSION

- predicts pattern separation
- separation for auditory objects

REFERENCES

- *Neurobiology of Learning and Memory, 129, 4–28.*
- *Psychophysiology*, *31*(2), 175–181.

ACKNOWLEDGEMENTS

Yasha Amani, Ricky Chow, Jad Daou, and Yarden Levy

• To verify that the MMN predicted behavioral pattern separation, we correlated the MMN amplitudes with recognition d' scores for lure discrimination, d'(O,L)

• After correcting for multiple comparisons, we found the MMN was significantly related with d'(O,L), r = -.40, 95% BCa CI [-.69, -.02], p = .013, one-tailed.

• The primary finding that the MMN and d' (O,L) are correlated is consistent with our prediction that strong mnemonic representation is formed from the MMN and that it

• Therefore, the MMN paradigm provides a test of both recognition memory and pattern

• Our investigation is the first to show that our capacity to discriminate auditory inputs, as measured by MMN, gives rise to unique, long-term memories

Garrido, M. I., Kilner, J. M., Stephan, K. E., & Friston, K. J. (2009). The mismatch negativity: A review of underlying mechanisms. Clinical Neurophysiology, 120(3), 453-463.

Näätänen, R., Kujala, T., Light, G., & Oxford Scholarship Online – York University. (2019) The mismatch negativity: A window to the brain (First edition). Oxford University Press.

Rolls, E. T. (2016). Pattern separation, completion, and categorisation in the hippocampus and neocortex.

Schröger, E. (1994). An event-related potential study of sensory representations of unfamiliar tonal patterns.