

Introduction

- Speech error detection (SED) is essential for effective communication and is often impaired by strokes that cause language deficits (i.e. aphasia) [1,2].
- Activity in the medial-frontal brain regions is associated with SED [3,4]. However, their role in aphasia is unclear, as these regions are not typically damaged directly by strokes that cause aphasia [5].
- A study in our lab showed that lesions to medial frontal white matter impair SED [6], suggesting a role of anatomical connections to medial frontal regions.
- We investigated whether integrity of anatomical connections to medial-frontal brain regions correlates with SED performance in adults with aphasia from chronic left-hemisphere stroke in a whole-connectome analysis.

Methods

Participants

- 36 survivors of chronic left-hemisphere stroke (>6 months) and 38 age- and education-matched healthy controls.
- Analyzed detection rate in participants who committed at least 5 of the following error types: All Errors (n=36), Phonological errors (n=29), or Semantic errors (n=17).

Stroke Survivor Demographics By Error Type	All Errors (n=36)	Phonological Errors (n=29)	Semantic E (n=17)
Δqe : mean (SD)	60 1 (9 5)	58 8 (9 1)	58 5 (9 1)
Handedness: mean (SD)	75.7 (48.4)	80.2 (41.6)	77.4 (51.2)
Gender	23 M 13 F	19M 10F	11M 6F
Years of Education: mean (SD)	16.2 (3.2)	16.2 (3.3)	16.2 (3.2)
Months Since Stroke: mean (SD)	47.3 (40.9)	43.9 (37.1)	44.3 (41.7)
Lesion Volume in voxels: mean (SD)	7213 (5768)	7787 (5702)	7678 (5215)

Speech Error Monitoring Relies on the Integrity of Anatomical Connections to Bilateral Frontal Brain Regions

Joshua McCall¹, J. Vivian Dickens¹, Ayan S. Mandal^{1,5}, Andrew T. DeMarco¹, Elizabeth H. Lacey^{1,2}, Apoorva Kelkar³, John D. Medaglia^{3,4}, Peter E. Turkeltaub^{1,2} ¹Georgetown University Medical Centre, Neurology Department, Washington, DC ²MedStar National Rehabilitation Hospital, ³Drexel University, ⁴University of Pennsylvania, ⁵University of Cambridge

Behavioral Testing

- Participants completed a confrontation picture naming test
- SED was measured as volunteered acknowledgment of one's own speech errors without any influence from the examiner (e.g., "dog....no that's not right!")

Data Analysis

- Anatomical connectomes were derived in MRtrix3 [7] using constrained spherical deconvolution and anatomically-constrained probabilistic tractography of diffusion weighted images.
- Connections between Lausanne atlas parcels (scale 125) were analyzed if present in 100% of control connectomes.
- Support-vector regression connectome-symptom mapping identified connections in which the loss of apparent fiber density was associated with poor SED.
- Regressions were corrected for lesion volume, with continuous family wise error rate=.05 at v=10 based on 10,000 permutations.

Results

• The maps for detection of All Errors and Phonological Errors were significantly non-random (Omnibus tests). • 15 connections survived thresholding in each analysis. The map for Semantic Errors was nonsignificant.

Detection of All Errors

Anatomical Connections

Right parsorbitalis $1 \leq$ Right medialorbitofrom Right superiortemporal 4 > Right thalamuspression Left lateralorbitofrontal 2 <> Left lateralorbitor Right frontalpole $1 \leq \text{Left parstriangularis } 1$ Right rostralmiddlefrontal 5 <> Left parstriang Right superiorfrontal 1 <> Left parstriangularis Right superiorfrontal 2 > Left parstriangularis Left rostralmiddlefrontal 4 🗢 Left superiorfro Left rostralmiddlefrontal 5 <> Left superiorfrom Left caudalmiddlefrontal 1 <> Left precuneus Left parstriangularis $1 \Leftrightarrow$ Left temporalpole 1 Right superiorfrontal 1 > Left insula 3 Left lateralorbitofrontal $3 \Leftrightarrow$ Left insula 3 Right superiorfrontal $1 \leq \text{Left caudate}$ Left insula $3 \Leftrightarrow$ Left amygdala

rrors

	MNI Coordinates
ntal 1	$\{39, 38, -7\} \Leftrightarrow \{8, 48, -11\}$
oper	$\{39, -5, -10\} \Leftrightarrow \{12, -20, 8\}$
frontal 3	$\{-34, 29, -5\} \Leftrightarrow \{-22, 37, -13\}$
	$\{6, 63, -5\} \diamondsuit \{-39, 32, 6\}$
ularis 1	$\{16, 60, 6\} \diamondsuit \{-39, 32, 6\}$
s 1	$\{8, 51, 7\} \diamondsuit \{-39, 32, 6\}$
s 1	$\{9, 44, 22\} \Leftrightarrow \{-39, 32, 6\}$
ntal 1	$\{-26, 50, 22\} \diamondsuit \{-10, 58, 12\}$
ntal 2	$\{-29, 52, 8\} \diamondsuit \{-10, 45, 20\}$
3	$\{-37, 15, 43\} \diamondsuit \{-10, -65, 39\}$
	$\{-39, 32, 6\} \diamondsuit \{-26, 10, -29\}$
	$\{8, 51, 7\} \diamondsuit \{-35, 12, -4\}$
	{-22, 37, -13} ◇ {-35, 12, -4}
	$\{8, 51, 7\} \Leftrightarrow \{-15, -5, 11\}$
	$\{-35, 12, -4\} \Leftrightarrow \{-22, -5, -20\}$

Results (cont.) **Detection of Phonological Errors**

Anato Right Right Left p Left p Left p Left r Left o Left c Left p Left p Right Left p Right

- with reduced detection of all errors in aphasia
- phonological errors.
- executive networks in speech error monitoring.

- Dec:37(5):627–41
- 2019 Nov 20];7. Available from:
- perception. NeuroImage. 2016 Feb 1:126:96–105.
- BMC Neurol. 2009 Jul 9:9:30.
- errors. Neurobiol Lang. 2020
- Aug 29. Review. PubMed PMID: 31473352.

This research is supported by NIH/NCATS KL2TR000102, R03DC014310, R01DC014960, and Doris Duke Charitable Foundation 2012062 to P.E.T, and NIH F31DC014875 to M.E.F

omical Connections	MNI Coordinates
lateralorbitofrontal 2 $>$ Right medialorbitofrontal 1	{33, 28, -7} <> {8, 48, -11}
parsorbitalis 1 🗢 Right medialorbitofrontal 1	{39, 38, -7} <> {8, 48, -11}
medialorbitofrontal 1 🗢 Left medialorbitofrontal 1	{8, 48, - 11} ^{\$\$\$} {-10, 49, - 5}
oarstriangularis 1 🗢 Left rostralmiddlefrontal 2	{-39, 32, 6} ◇ {-28, 37, 35}
oarsopercularis 1 🗢 Left rostralmiddlefrontal 2	{-42, 21, 18} ◇ {-28, 37, 35}
oarsopercularis 2 <> Left rostralmiddlefrontal 2	{-45, 12, 17} ^(-28, 37, 35)
oarsopercularis 1 🗢 Left rostralmiddlefrontal 3	{-42, 21, 18} ◇ {-39, 39, 21}
ostralmiddlefrontal 2 <> Left rostralmiddlefrontal 3	{-28, 37, 35} ◇ {-39, 39, 21}
audalmiddlefrontal 2 🗢 Left precentral 2	{-36, 8, 42} ◇ {-19, -24, 55}
audalmiddlefrontal 2 🗢 Left precentral 3	{-36, 8, 42} ◇ {-31, -23, 61}
orecentral 5 🗢 Left paracentral 1	{-39, -8, 50} ◇ {-7, -36, 61}
orecentral 7 🗢 Left paracentral 1	{-48 , 2, 32 } <i>⇔</i> {-7 , -36 , 61}
superiorfrontal 3 <> Left posteriorcingulate 1	{8, 34, 41} ^{(-8, -15, 36} }
orecentral 2 <> Left insula 1	{ - 19, - 24, 55} { - 38, - 19, 11}
superiorfrontal 1 <> Left insula 3	$\{8, 51, 7\} \diamondsuit \{-35, 12, -4\}$

Conclusion

Disconnections of medial-frontal regions in both hemispheres, and lateral frontal disconnections in the left hemisphere are associated • Disconnections of left lateral-frontal and to some right lateral/medial-frontal regions are related to reduced detection of

• The importance of connectivity to bilateral frontal brain regions for speech-error detection in aphasia supports a critical role of

Selected References

Marshall RC, Tompkins CA. Verbal self-correction behaviors of fluent and nonfluent aphasic subjects. Brain Lang. 1982 Mar;15(2):292–306. Oomen CC, Postma A, Kolk HH. Prearticulatory and postarticulatory self-monitoring in Broca's aphasia. Cortex J Devoted Study Nerv Syst Behav. 2001

Riès SK, Xie K, Haaland KY, Dronkers NF, Knight RT. Role of the lateral prefrontal cortex in speech monitoring. Front Hum Neurosci [Internet]. 2013 [cited Gauvin HS, De Baene W, Brass M, Hartsuiker RJ. Conflict monitoring in speech processing: An fMRI study of error detection in speech production and Arboix A, García-Eroles L, Sellarés N, Raga A, Oliveres M, Massons J. Infarction in the territory of the anterior cerebral artery: clinical study of 51 patients. Mandal A, Fama M, Skipper-Kallal L, DeMarco AT, Lacey E, Turkeltaub PE. Brain structures and cognitive abilities important for the self-monitoring of speech Tournier JD, Smith R, Raffelt D, Tabbara R, Dhollander T, Pietsch M, Christiaens D, Jeurissen B, Yeh CH, Connelly A. MRtrix3: A fast, flexible and open software framework for medical image processing and visualisation. Neuroimage. 2019 Nov 15;202:116137. doi: 10.1016/j.neuroimage.2019.116137. Epub 2019