# Competitive queuing state of actions during planning predicts execution accuracy of a motor sequence

Skilled Action Memory

Myrto Mantziara, Tsvetoslav Ivanov, George Houghton and Katja Kornysheva PRIFYSGOI School of Psychology, Bangor University, UK

## Introduction

- Actions of a sequence are represented in a parallel activation gradient and selected for output through competition (competitive queuing; CQ)<sup>1-3</sup>.
  - Parallel weighting of action related neural activity during sequence planning depends on serial position; this gradient predicts subsequent execution accuracy<sup>4</sup>.
- The CQ gradient may also be modulated by the

## Results: CQ during preparation

#### **Experiment 1**

<u>ي</u> 120

buinols 115

RT

110

#### **Experiment 2**

**Experiment 3** 

Action probes form a graded activation of sequence elements which corresponds to their initial serial position and is modulated by preparation duration but not sequence timing.

temporal structure of the planned sequence<sup>5</sup>.

## Aims & Predictions

- 1) Behavioural readout of CQ state of action elements during preparation reflective of their original position in the to-be-performed sequence. 2) Does the preparatory CQ gradient determine
  - accuracy or temporal planning?
  - If the CQ gradient codes for accuracy of actions plan, it should be stronger with longer preparation and related to production accuracy.
  - If it codes for sequence timing (speed & temporal grouping), its pattern should change with timing manipulations.

## Methods





The CQ gradient during preparation correlates\* with temporal accuracy and initiation speed in sequence production. (\*Group correlations across experiments)









e.kornysheva@bangor.ac.uk

- First behavioural evidence to show that the preparatory activation gradient of competitive upcoming actions of a sequence reflects the readiness for accurate and fluent execution. The planned temporal structure of the sequence is not controlled by the  $\bullet$ CQ mechanism during preparation. The CQ gradient encodes the relative availability of each planned  $\bullet$ sequential element to convert to serial motor output according to its initial serial position; the later the position the less available.
- The CQ gradient is a fast, automatic planning mechanism for motor lacksquaresequence production.

#### References

- Houghton, G. (1990). Acad. Press Prof., Inc., 287.
- Bullock, D., & Rhodes, B. J. (2003). MIT Press, Eds: M.A. Arbib.
- Averbeck, B., et al. (2002). PNAS, 99 VN-r(20), 13172.
- Kornysheva, K., et al. (2019). Neuron, 101, 1.
- 5. Burgess, N. & Hitch, G. J. (1999). Psychol. Rev. 106, 551

### m.mantziara@bangor.ac.uk