Ryerson University

Jumping to Conclusions: Younger Adults Show Stronger Lévy Flight Patterns Than Older Adults During Fast Binary Decisions

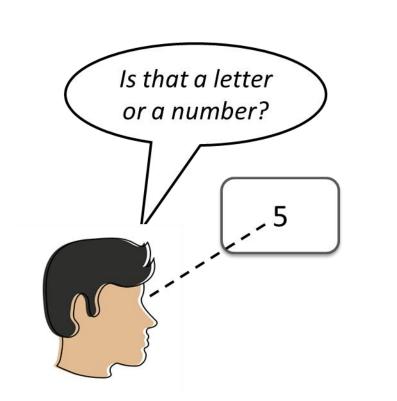
Background

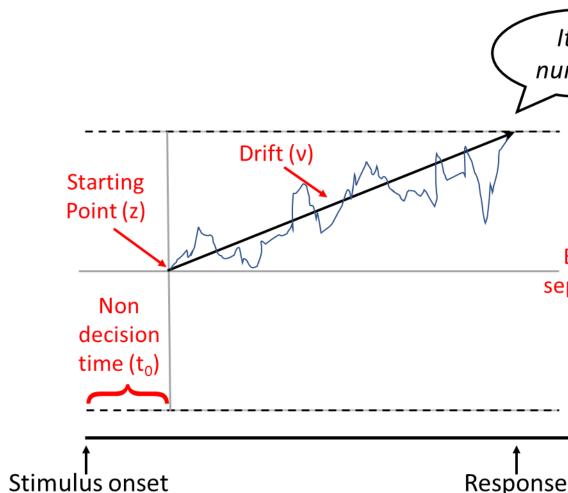
- Over the past 20 years, the **Diffusion Model (DM)**¹ has gained popularity as a neurocomputational framework of speeded decision making²
 - The DM assumes that simple decisions (e.g., is that shape a person or a tree?) reflect the accumulation of noisy information until a threshold of evidence is reached
- The DM has also advanced research in **cognitive aging**, by identifying age differences in cognitive processes underlying speeded decisions^{3,4,5}
- Recent research in aging has increasingly focused on age-related changes in the intra-individual variability of neurocognitive processes⁶
- The standard DM assumes that fast binary decisions are based on an evidenceaccumulation process with Gaussian noise. However, recent research suggests that young-adult data are sometimes better characterized by so-called Lévyflight models with heavy-tailed noise distributions. Lévy flights produce occasional extreme jumps in the accumulation process^{7,8} which may be adaptive in certain contexts (e.g., exploration, foraging).

Research Questions

- 1. Do younger and older adults differ with respect to the "jumpiness" of the information accumulation process that guides their decisions?
- 2. How does "jumpy" information accumulation relate to other features of decision processes in younger and older adults?

Diffusion Model (DM) vs. Lévy Flight Model



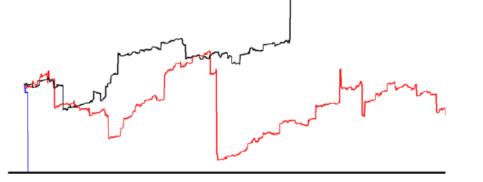


Parameters of the Standard DM

- **Non-decision time (t_o):** Time needed for stimulus encoding and motor response
- **Starting point (z)**: Located between the 2 boundaries; exact location determines bias
- **Drift rate (v)**: Average rate of information accumulation process; higher means more efficient (accurate and fast)
- **Boundary separation (a)**: Threshold of evidence needed for a decision; wider means more cautious (accurate and slow)

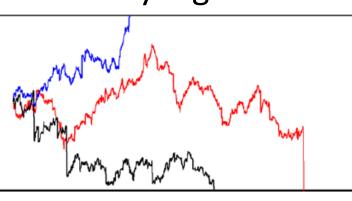
The Lévy Flight Model has an additional free Stability Parameter α which determines the shape of the noise distribution:

 $\alpha = 1$ (extremely heavy-tailed) Cauchy flight model



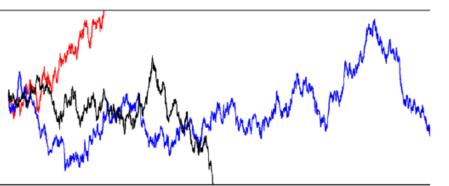
Many extreme jumps

 $1 < \alpha < 2$ (heavy-tailed) Lévy flight model



Some extreme jumps

α=2 (Gaussian) Standard DM



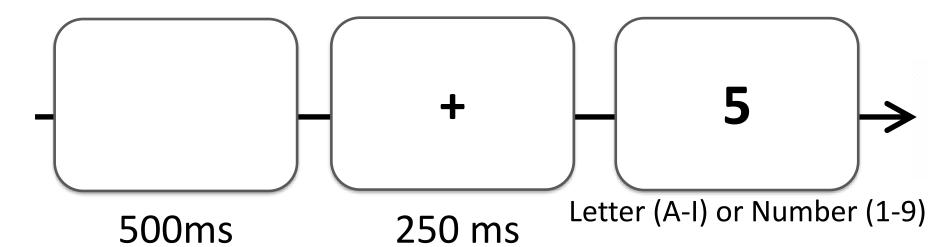
No extreme jumps Sample path figures from Voss et al. (2019)

A. Makani¹, E.M. Wieschen², A. Voss², & J. Spaniol¹

¹Ryerson University; ²Universität Heidelberg

Method

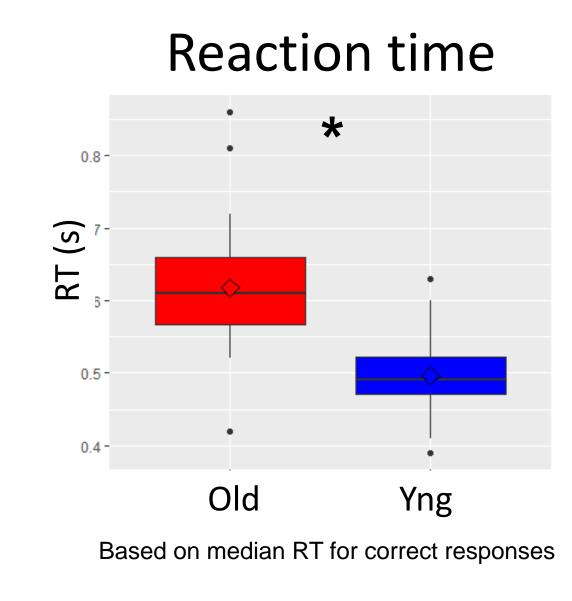
Letter-Number Discrimination Task

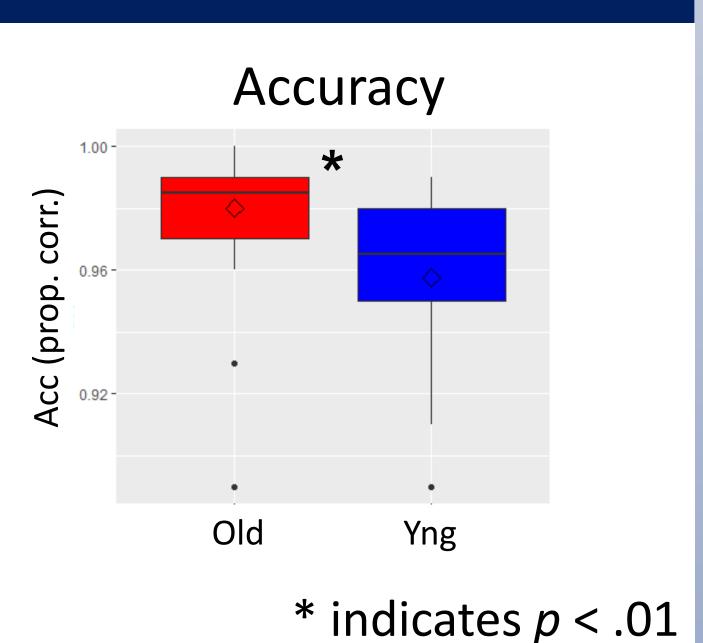


4 blocks @ 50 trials \rightarrow 200 trials total 40 healthy Older Adults (Age 63-80, Mean = 69.95; 26 Female)

Participants: 40 healthy Younger Adults (Age 18-35, Mean = 23.95; 27 Female) Model parameters estimated for each participant using deep probabilistic modeling approach for likelihood-free parameter estimation⁸

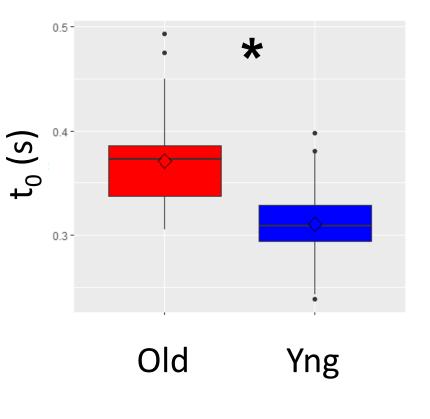
Behavioral Results

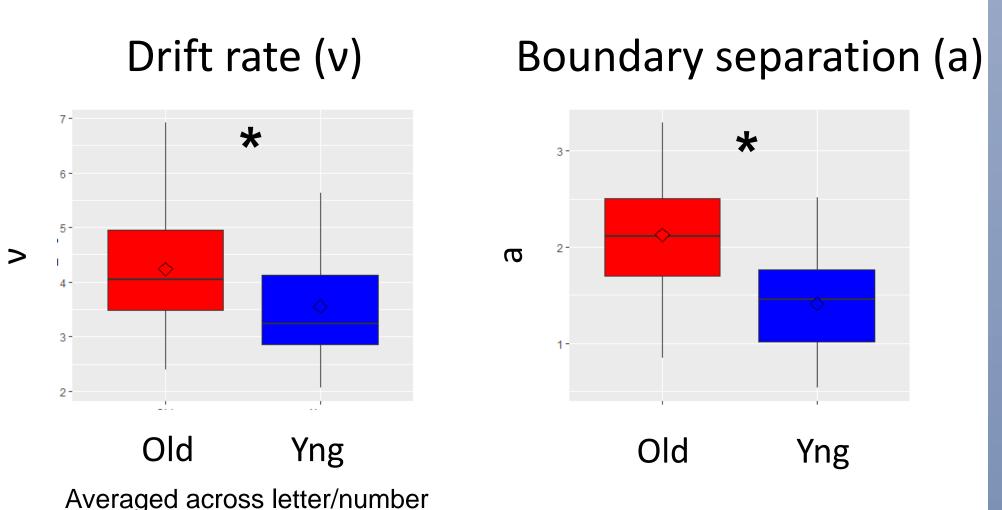




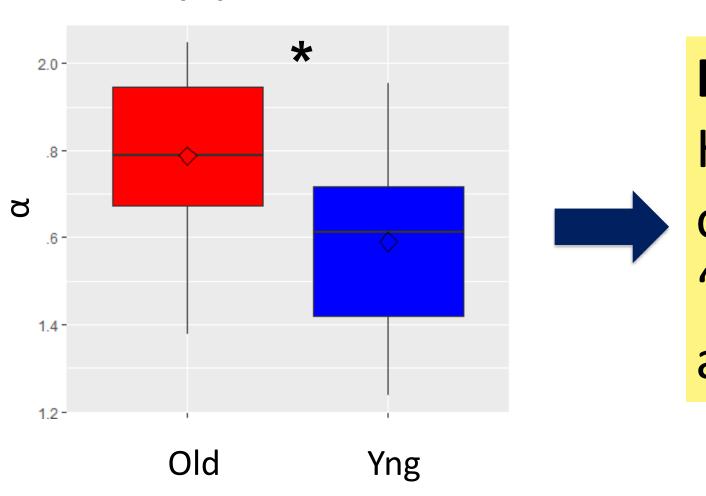
Model Parameters

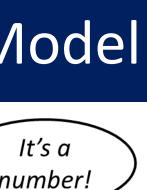
Non-decision time (t_0)





Stability parameter (α)





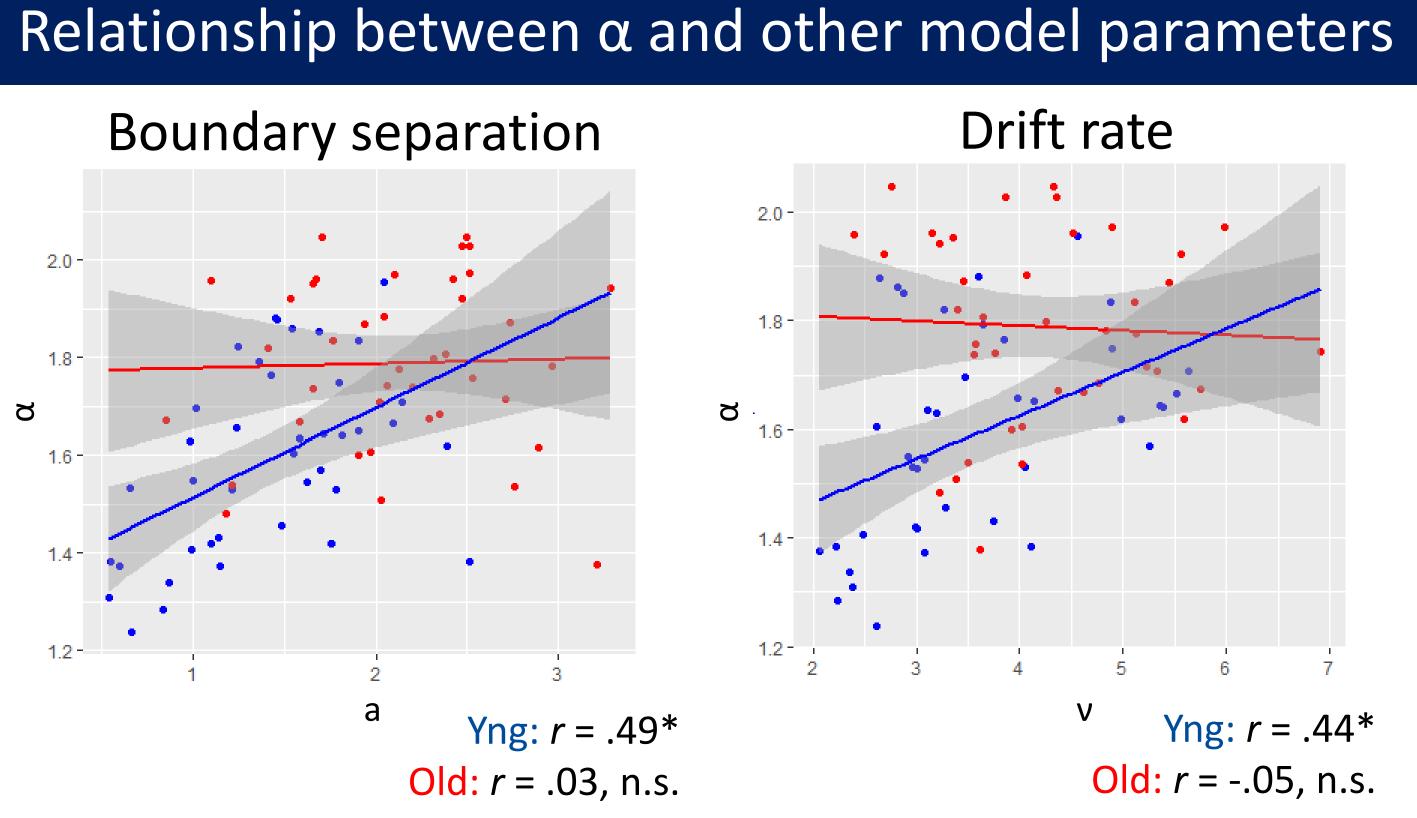
Boundarv separation (a



Key finding #1

Higher value of α in older adults: less "jumpy" information accumulation in aging.

* indicates p < .01



Key finding #2 Younger adults with wider decision boundaries and higher drift rates also had higher α ("less jumpy"). This pattern was absent in older adults.

This study offers novel evidence of age differences in the intra-individual variability of information accumulation processes in decision making \rightarrow "Jumping to conclusions" more typical of younger adults than of older adults

Open questions: functional significance and physiological basis of Levy flights; stability across decision domains; relationship to other measures of intra-individual variability (e.g., fMRI signal variability)

1. Ratcliff, R. (1978). *Psychol.Rev.*, 85, 59–108. 2. Forstmann, B. U., Ratcliff, R., & Wagenmakers, E.-J. (2016). Annu. Rev. Psychol., 67, 641–66. 3. Ratcliff, R., Thapar, A., & McKoon, G. (2006). *Psychon.Bull.Rev.*, 13, 626–635. 4. Spaniol, J., Madden, D.J., & Voss, A. (2006). *JEP:LMC*, *32*, 101–117. 5. Spaniol, J., Voss, A., Bowen, H.J., & Grady, C.L. (2011). *Psychol.Aging*, *26*, 932-9. 6. Grady, C.L., & Garrett, D.D. (2018). *NeuroImage*, *69*, 510-523. 7. Voss, A., Lerche, V., Mertens, U., & Voss, J. (2019). *Psychon.Bull.Rev., 26*, 813–832. 8. Wieschen, E.M., Voss, A., & Radev, S. (2020). *Quant.Meth.Psych.*, 16, 120-126. Chaires **|***| de recherche Research du Canada Chairs

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

Contact: aalim.makani@ryerson.ca

Conclusions

References & Funding

Canada

