

Development of implicit location probability learning

Saebyul Lee¹, Injae Hong², and Su Keun Jeong¹

Cognitive Science Research Group, Korea Brain Research Institute¹, Department of Psychology, Yonsei University²

- Background

Location probability learning (LPL)

- Habitual attention bias toward a rich region where a target frequently appeared in a visual search task
- Acquired without intention or explicit awareness
- Spared in cognitive and neurological deficits (e.g., visual neglect, autistic spectrum disorder, Parkinson's disease)
- LPL has been observed in older adults, but the developmental trajectory of LPL has not been examined empirically

- Questions

- When do children show LPL? Is children's LPL comparable to adults'?
- How does children's LPL relate to development-dependent learning factors (i.e., executive functions)?

- Participants: 63 children (ages 4-9) and 13 adults
- Visual search task: find and touch a hands-down penguin as quickly as possible
 - Training blocks (5 blocks)
 - Targets appeared in the rich quadrant in 50% of trials and in each sparse quadrant in 16.67% of trials
 - The location of the rich quadrant was counterbalanced across participants
 - Testing block (1 block)
 - A target appeared equally often in the rich and sparse quadrants
 - Testing block removed the possible influence of short-term intertrial priming in the training blocks
- Executive function was measured with the NIH toolbox

Children showed LPL

Developmental change in the overall RT

Developmental stability in the LPL (Sparse RT > Rich RT)

Children's LPL was comparable to adults'

Executive function predicts overall RT

Multiple regression analysis for variables predicting the children's search performance in the testing block

Predictors	Raw B	t	R ²	df	F	р
Overall RT model			.641	(5, 24)	8.562	<.001
Age	-307.689	-4.453				<.001
PSM	.619	.167				.869
LSWM	17.341	2.762				.011
DCCS	-11.247	-2.739				.011
flanker	-12.742	-2.140				.043

Executive function does not predict LPL

Predictors	Raw B	t	R ²	df	F	р
Cueing Index model			.229	(5, 24)	1.425	.251
Age	007	560				.581
PSM	<.001	.653				.520
LSWM	003	-2.333				.028
DCCS	<.001	.066				.948
flanker	.001	1.396				.176

• Picture Sequence Memory (PSM): episodic memory

- List Sorting Working Memory (LSWM): working memory
- Dimensional Card Sorting Test (DCCS): cognitive flexibility
- Flanker: inhibitory control

- Conclusions

- LPL occurs early in development and remains stable until early adulthood
- Habitual attention learning follows a distinct developmental pattern from explicit goal-driven spatial attention learning

