Involuntary mental replay of music improves memory for musical sequence knowledge

Benjamin M. Kubit ${ }^{12}$ and Petr Janata ${ }^{1}$

${ }^{1}$ Center for Mind and Brain \& Dept. of Psychology, University of California, Davis
${ }^{2}$ Princeton Neuroscience Institute, Princeton University

Stimuli: 8 -second music loops consisting of 4 instruments available as Apple Loops (Apple, Inc., Cupertino CA); composed in C -major, $4 / 4$ meter, 120 bpm tempo; sets of 3 loops were combined into 1 -minute-36-
second-long soundracks, with each .
Music Exposure: Each soundtrack repeated multiple times during the task condition with which it was

Musical Sequence Imagery Recognition (MSIR) : Report with a "Yes/No" response, whether the sound resumes after the silent blank at the correct location in the loop. To achieve above chance performance participants had to accurately imagine the missing part of the loop. Each loop was presented 8 times, 4 as a target and 4 as a foil, thus allowing for the calculation of a d score on a per-loop basis.

Target Trial

Survey Period: Opportunity for participants to experience INMI for the loops to which they had just been Survey Period: Opportunity for participants to experience INMI for the loops to which they hat
exposed. Also expected INMI for loops outside of the laboratory, between experiment sessions. INMI Assessment: Simple loop recognition task: participants heard each loop and an equal number of novel loops serving as foils. If loop was recognized on Day 1, participants were asked to estimate the frequency of
INMI episodes experienced and to report the spatiotemporal context of the episode.

INMI Phenomenology

Day 1 response proportions
$87 \%, 90 \%$, and 87% of participants experienced INMI for at least 1 loop during the Day session in Exp. 1-3, respectively

Exp.	$\begin{gathered} \mathrm{n} \\ \text { IRMI } \end{gathered}$	INMI Frequency					INMI Vividness			
		1-20\%	21-40\%	41-60\%	61-80\%	81-100\%	Slightly Vivid	Mood. Vivid	Very	
1	177	. 58	${ }^{21}$. 11	08	02	${ }^{33}$. 30	. 19	. 18
2	163	. 60	21	. 13	. 05	. 01	. 30	. 39	. 23	07
3	126	. 67	. 23	. 06	. 05	. 00	. 37	. 35	. 18	. 10

Majority of INMI happened during break periods prior to and/or during performance of the MSIR task.

Day 2 response proportions
$77 \%, 80 \%$, and 87% of participants experienced INMI for at least 1 loop during the 1 -week delay period in Exp. 1-3, respectively.

Majority of INMI occurred while participants were traveling to and from the lab and during periods of mind wandering. Participants failed to recall the trigger of most episodes.

Effect of Music Exposure Task on INMI and Music Memory
On average, probability of experiencing a loop as INMI decreased across 1 -week delay period (Exp. 1-3) while accuracy of a music memory increased (Exp. 1 and 2).
Experiment 1 Experiment 2 Experiment $3 \quad$ Experiment 1 Experiment 2 Experiment 3

Directing attention away from music during exposure had no effect on loop memory accuracy or probability of experiencing a loop as INMI (Exp. 1 and 2).
Directing attention AND sensorimotor engagement away from music decreased the accuracy of loop memory and probability of experiencing a loop as INMI (Exp. 3).

Results Cont'd

Effect of INMI on Music Memory

Measures of loop-level memory change bootstrapped effect sizes and 95\% CI More frequent INMI episodes predicted more accurate loop memory (Exp. 1-3)

More frequent INMI episodes predicted better maintenance of correct information (Exp. 1-3). Exp den Proportion Same Correct Resport

Exp.	dep.	Proportion Same Correct Response (PSCR)		
	ind.	Day $1 \mathrm{~d}^{\prime}$	Day 1 INMII freq.	Day 2 INMI freq.
1		0.022 [0.001, 0.044]	$0.015[-0.005,0.03$	$0.041[0.004,0.077]$
2	Efiect	0.015 [-0.019, 0.048]	0.037 [0.003, 0.068]	$0.035[-0.017,0.086]$
3		0.049 [0.018, 0.082]	0.041 [0.003, 0.079]	0.001 [-0.052, 0.051]

More frequent INMI episodes predicted more updating of incorrect information (Exp. 1-3)

Conclusions

INMI is a memory phenomenon: the spontaneous replay of music memories A. Stronger encoding of a musical sequence leads to increased INMI frequency B. More frequent INMI leads to greater improvements in musical sequence memory Improvements ($\Delta \mathrm{d}^{\prime}$) a function of two INMI effects on memory:
INMI during the experiment (Day 1) tends to protect against forgetting while INMI after the experiment (Day 2) improves poorly encoded memories

