
METHODS

RESULTS

In recent years it has become possible to use mobile electroencephalographic (mEEG) technology to 
collect research grade data (Krigolson et al., 2017). The recent advances in mEEG data quality and the 
ease of use have opened the 147 doors for a wide range of real-world applications for human 
neuroimaging in addition to allowing large scale data collection. Here, we present the results from a large 
sample size study (n = 1000) wherein we used a combination of event-related potentials (ERPs), time-
frequency analysis (FFTs), and machine learning classifiers to examine relationships between neural data 
and cognitive fatigue. In this study, participants played two simple games on an Apple iPad using PEER 
research software a visual oddball task and a two-choice gambling task while mEEG data was recorded 
from a MUSE headband. In line with previous research, our results demonstrate that diminished ERP 
responses (P300, reward positivity) are associated with increased cognitive fatigue. Further, using a 
combination of multivariate regression and machine learning classifiers we were able to greatly increase 
the explained variance in our results (Discriminant Analysis Classifier with Bayesian Optimization, 91.6% 
accuracy) and come up with a more accurate prediction of cognitive fatigue level. Importantly, we 
demonstrate two key things here. One, we provide further evidence for the use and validity of mEEG in 
research. Two, we provide an important building block for cognitive fatigue detection capability something 
that obviously could have huge impact in a variety of real-world applications.
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PEER
Oddball
Task

Participants played a 
standard visual oddball 
task while EEG data was 
recorded from a MUSE 

EEG headband. 
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Grand Average ERP waveforms and the associated difference waveform
plotted with 95% confidence intervals. Note, this data reflects the pooled

average of electrodes TP9 and TP10. Also plotted is the frequency data across
performance of the oddball task.

Relationships between the ERP features for the N200 and P300 (amplitude
and latency) and perceived cognitive fatigue score.

Relationships between the power in four frequency bandwidths 
(frontal delta, frontal theta, posterior alpha, and frontal beta) and 

perceived cognitive fatigue score.

We also used machine learning classifiers to attempt to find a more accurate classification of perceived cognitive fatigue. 
Our input to the classifiers were the ERP and spectral features (e.g., N200 amplitude, frontal theta power) as opposed to the
actual trial data (which we feel would be more accurate – this analysis is in progress). In any event, we did find that a 
Cubic Support Vector Machine we were able to get a 90.9% successful classification rate with cross validation. 

REGRESSION ANALYSIS
We used multiple regression and constructed a model that combined all of the ERP and FFT features to predict perceived 
cognitive fatigue. Here we found that a model could be constructed that provided a considerably more accurate prediction of 
perceived cognitive fatigue, F(7,999) = 49,81; r = 0.510 [Model Components: N200A, frontal delta, P300A, posterior delta, 
posterior theta, N200A, N200L].


