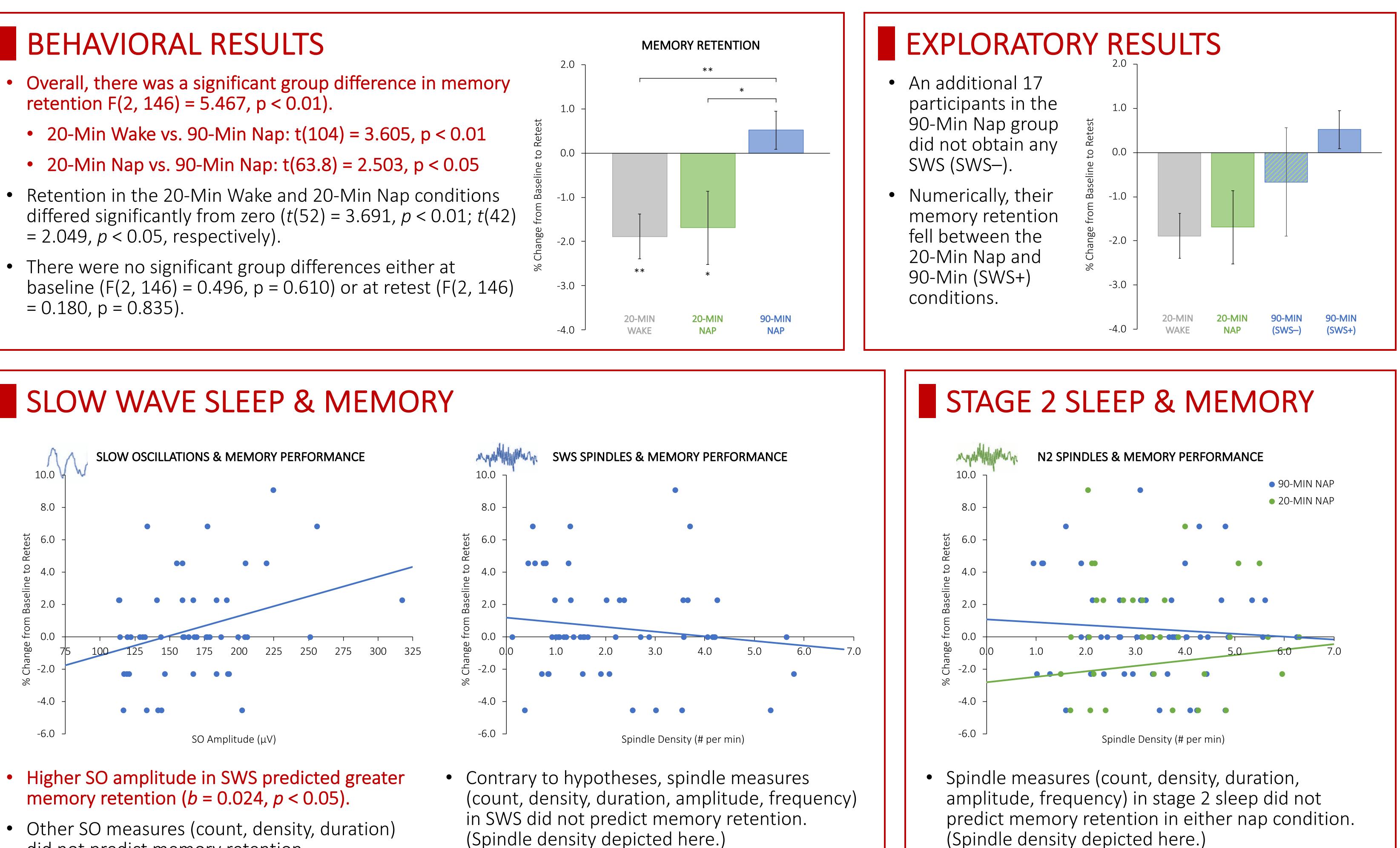
Power Naps and Episodic Memory: Differential Benefits of Stage 2 Sleep and Slow Wave Sleep

BACKGROUND

- Sleep plays a critical role in episodic memory consolidation. However, "power naps" (~20 min), which contain primarily stage 1 and stage 2 sleep, may not confer the same memory benefits as naps that contain a full sleep cycle (~90 min).
- Some studies suggest that stage 2 sleep, which is characterized in the EEG by sleep spindles (12-15) Hz), is sufficient for memory consolidation 1,2 .
- However, spindles also occur during slow wave sleep (SWS), and some research suggests that SWS and slow oscillations (SOs; < 1 Hz) are necessary to observe episodic memory benefits^{3,4}.
- It remains unclear whether stage 2 sleep alone is sufficient for spindle-related memory benefits, or if SWS is essential for memory consolidation (e.g., via SO-spindle-ripple events)^{5,6}.
- In this study, we hypothesized that:
 - episodic memory retention would be greater following a nap containing SWS, as compared to both a nap with no SWS and active wakefulness.
 - slow oscillations and spindles during SWS, but not spindles during stage 2 sleep, would be uniquely associated with memory performance.


 149 hea Three co 20-Min 20-Min 	HOD Ithy young onditions: Wake: n = Nap: n = 4 Nap: n = 5	g adults (96 fe 53 WAKE REM 3 N1	emale; 1 20-Min Na		ars) 90-Min	Nap
PROCEDU 20-Min Wake Conditions		Encoding & Baseline Test	PSG Prep	Game OR Nap	Electrode Remova	Retest
90-Min Nap C	ondition	1:30pm		3:00pm		4:00pm
Encoding & Baseline Test	PSG Prep	Nap		Electrode Removal	Retest	
12:00pm		1:30pm			3:30pm	→
 Episodic 	memory	D PAIR ASS retention wa	s measu	red as t	he per	
Encoding	garden - bell 5 s	+ + 1 s	doll - beacl 5 s		S	girl - pot 5 s

Encoding		Dell + do			giri - pot
	5 s	1 s	5 s	1 s	5 s
Baseline Test & Retest	doll -	+	ruler -	+	girl -
	Self-paced	1 s	Self-paced	1 s	Self-paced

Sara Y. Kim & Jessica D. Payne Department of Psychology, University of Notre Dame, IN

- retention F(2, 146) = 5.467, p < 0.01).

- = 2.049, p < 0.05, respectively).
- There were no significant group differences either at = 0.180, p = 0.835).

- Higher SO amplitude in SWS predicted greater
- did not predict memory retention.

SLEEP ARCHITECTURE

	20-MIN NAP		90-MIN	90-MIN (SWS–)		90-MIN (SWS+)	
	Mean	SD	Mean	SD	Mean	SD	
TST (min)	14.87	3.08	66.88	12.65	68.95	11.72	
Latency (min)	3.98	3.02	5.74	4.38	5.32	5.52	
WASO (min)	1.56	1.85	11.74	9.00	3.91	4.95	
SE (%)	73.48	16.09	79.01	11.40	88.58	9.10	
Wake (min)	5.53	3.61	17.47	9.40	9.23	8.38	
N1 (min)	7.44	3.27	20.91	11.33	10.83	6.23	
N2 (min)	7.16	3.37	32.65	13.95	29.24	8.58	
SWS (min)	0.00	0.00	0.00	0.00	21.59	10.74	
REM (min)	0.27	1.17	13.32	15.59	7.29	8.89	
N1 (%)	50.61	20.00	33.04	20.85	16.11	10.18	
N2 (%)	47.82	19.49	49.12	19.84	42.81	11.79	
SWS (%)	0.00	0.00	0.00	0.00	31.64	15.30	
REM (%)	1.57	6.50	17.84	19.92	9.44	10.40	

CONCLUSIONS

• To our knowledge, this study is the first to experimentally isolate stage 2 from SWS to examine stage-specific relationships between sleep features and episodic memory.

• In contrast with prior research⁷, a short nap without SWS did not benefit episodic memory, nor did stage 2 spindles predict memory retention, suggesting that stage 2 sleep alone may not suffice for sleep-dependent memory consolidation.

• SWS, and specifically slow oscillations during SWS, may be necessary to observe episodic memory benefits⁸.

• These findings advance our knowledge on sleep's role in episodic memory, and provide evidence that the duration and composition of a daytime nap may affect consolidation.

REFERENCES

- Gais et al. (2002). Learning-dependent increases in sleep spindle density. Journal of Neuroscience.
- van der Helm et al. (2011). Sleep-dependent facilitation of episodic memory details. PloS One.
- Cox et al. (2012). Involvement of spindles in memory consolidation is slow wave sleep-specific. Learning & Memory.
- Rasch et al. (2007). Odor cues during slow-wave sleep prompt declarative memory consolidation. Science. Staresina et al. (2015). Hierarchical nesting of slow oscillations, spindles and
- ripples in the human hippocampus during sleep. *Nature Neuroscience*. Ladenbauer et al. (2017). Promoting sleep oscillations and their functional
- coupling by transcranial stimulation enhances memory consolidation in mild cognitive impairment. *Journal of Neuroscience*.
- Lahl et al. (2008). An ultra short episode of sleep is sufficient to promote declarative memory performance. Journal of Sleep Research.
- Heib et al. (2013). Slow oscillation amplitudes and up-state lengths relate to memory improvement. PLoS ONE.

