

Age Differences in Functional Network Reconfiguration with Working Memory Training

Alexandru D. Iordan¹, Kyle D. Moored², Benjamin Katz³, Katherine A. Cooke¹, Martin Buschkuehl⁴, Susanne M. Jaeggi⁵, Thad A. Polk¹, Scott J. Peltier¹, John Jonides¹, & Patricia A. Reuter-Lorenz¹ ¹University of Michigan - Ann Arbor, ²Johns Hopkins University, ³Virginia Tech, ⁴MIND Research Institute, ⁵University of California - Irvine

Demanding cognitive functions (e.g., working memory, WM), depend on the balance of neural network segregation and integration¹, which declines with age².

Cognitive training can improve performance and change brain activity even in older adults³. Less is known about training effects on functional connectivity.

Introduction

Goal: To assess functional network reconfiguration in younger (YA) and older adults (OA) after 10 days of verbal WM training.

Discussion

▶ Despite behavioral gains in both age groups, younger and older brains responded differently to WM training. \triangleright Younger adults increase network segregation with training, suggesting more automated processing with enhanced expertise. ▶ Older adults maintain, and potentially amplify, a more integrated global workspace, which may enhance capacity for network engagement. ▶ In conclusion, WM training promotes different trajectories in functional network reconfiguration for younger and older adults.

1. Whole-Brain Results

References

- 1. Dehaene et al. (1998). *PNAS*, 95(24), 14529-14534.
- 2. Damoiseaux (2017). *NeuroImage*, 46(4), 462-73.
- 3. Iordan et al. (*in press*). *NeuroImage,* [bioRxiv 869164].

Acknowledgements: NIA R21-AG-045460 to P.A.R.L. M.B. is employed at the MIND Research Institute, whose interest is related to this work. S.M.J. has an indirect financial interest in the

MIND Research Institute.

Contact: adiordan@umich.edu

Training effect on Sal/SMN E_{glob}, F_{1,17}=9.64, p=.006, η_p²=.36; Load effects on FPN and DMN E_{glob}, and DMN participation. *Note:* Statistics performed on nodes with stable module affiliation across all WM loads (i.e., bright color nodes).

Training effects on $E_{\rm glob}$ of FPN/Sal, $F_{1,19}$ =3.47, p =.078, η_p^2 =.16 and DMN. $F_{1,19}$ =11.34, p =.003, η_p^2 =.37, and on participation of FPN/Sal, *F*1,19=7.99, *p=*.011, *η*^p ²=.3, and DMN, *F*1,19=20.79, *p<*.001, *η*^p ²=.52.

Modularity

Group: *F*1,36=32.37, *p*<.001, *η*^p ²=.47; **Mode**: *F*1,36=141.94, *p*<.001, *η*^p ²=.8; **Group×Mode**: *F*1,36=20.31, *p<*.001, *η*^p ²=.36.

2. Individual Networks Results

Lower modularity and greater decrement with rest-to-task shift in OA

OA: No *task exposure* or *training* effects; **YA:** No *task exposure* but significant *training* effect, *F*_{1,19}=26.31, *p*<.001, *η*_p²=.58.

3. Pairwise Connectivity Results

Increased task-related modularity with training in YA

Community Structure

Group: *F*1,36=37.11, *p*<.001, *η*^p ²=.51; **Load**: *F*3,108=6.01, *p*=.001, *η*^p ²=.14; **Group×Time**: *F*2,72=4.66, p=.013, *η*^p ²=.12.

OA: Increased global efficiency within Sal/SMN with training

YA: Increased global efficiency within and lower participation of FPN/Sal and DMN with training

-
-
-
-

YA: Increased DMN segregation from FPN/Sal and Vis with training

-
-
-

OA: Diffusely increased between-

network connectivity with training

