

Age Differences in Functional Network Reconfiguration with Working Memory Training

Alexandru D. Iordan¹, Kyle D. Moored², Benjamin Katz³, Katherine A. Cooke¹, Martin Buschkuehl⁴, Susanne M. Jaeggi⁵, Thad A. Polk¹, Scott J. Peltier¹, John Jonides¹, & Patricia A. Reuter-Lorenz¹ ¹University of Michigan - Ann Arbor, ²Johns Hopkins University, ³Virginia Tech, ⁴MIND Research Institute, ⁵University of California - Irvine

Introduction

Demanding cognitive functions (e.g., working memory, WM), depend on the balance of neural network segregation and integration¹, which declines with age².

Cognitive training can improve performance and change brain activity even in older adults³. Less is known about training effects on functional connectivity.

<u>Goal</u>: To assess functional network reconfiguration in younger (YA) and older adults (OA) after 10 days of verbal WM training.

References

- 1. Dehaene et al. (1998). PNAS, 95(24), 14529-14534.
- 2. Damoiseaux (2017). NeuroImage, 46(4), 462-73.
- 3. lordan et al. (*in press*). *NeuroImage*, [bioRxiv 869164].

MIND Research Institute.

Acknowledgements: NIA R21-AG-045460 to P.A.R.L. M.B. is employed at the MIND Research Institute, whose interest is related to this work. S.M.J. has an indirect financial interest in the

Group: $F_{1,36}$ =37.11, p<.001, η_p^2 =.51; **Load**: $F_{3,108}$ =6.01, p=.001, η_p^2 =.14; **Group**×**Time**: $F_{2,72}$ =4.66, p=.013, η_p^2 =.12.

Increased task-related modularity with training in YA

1. Whole-Brain Results

Modularity

Lower modularity and greater decrement with rest-to-task shift in OA

Group: $F_{1.36}$ =32.37, p<.001, η_p^2 =.47; **Mode**: $F_{1.36}$ =141.94, p<.001, η_p^2 =.8; **Group**×**Mode**: $F_{1.36}$ =20.31, p<.001, η_p^2 =.36.

OA: No task exposure or training effects; YA: No task exposure but significant training effect, $F_{1,19}$ =26.31, p<.001, η_p^2 =.58.

Community Structure

Training effect on Sal/SMN E_{glob} , $F_{1.17}$ =9.64, p=.006, η_p^2 =.36; **Load effects** on FPN and DMN E_{glob} , and DMN participation. *Note:* Statistics performed on nodes with stable module affiliation across all WM loads (bright colors).

Training effects on E_{glob} of FPN/Sal, $F_{1.19}$ =3.47, p=.078, η_p^2 =.16 and DMN. $F_{1.19}$ =11.34, p=.003, η_p^2 =.37, and on participation of FPN/Sal, $F_{1.19}$ =7.99, p=.011, η_p^2 =.3, and DMN, $F_{1.19}$ =20.79, p<.001, η_p^2 =.52.

Discussion

> Despite behavioral gains in both age groups, younger and older brains responded differently to WM training. > Younger adults increase network segregation with training, suggesting more automated processing with enhanced expertise. > Older adults maintain, and potentially amplify, a more integrated global workspace, which may enhance capacity for network engagement. > In conclusion, WM training promotes different trajectories in functional network reconfiguration for younger and older adults.

2. Individual Networks Results

OA: Increased global efficiency within Sal/SMN with training

YA: Increased global efficiency within and lower participation of FPN/Sal and DMN with training

3. Pairwise Connectivity Results

OA: Diffusely increased betweennetwork connectivity with training

YA: Increased DMN segregation from FPN/Sal and Vis with training