

Changes in the Nature of Associations Between Internalizing Symptoms and Executive Functioning from 3 to 5 Years of Age

Caroline Howell¹, Brenna Martinez¹, Helen Day¹, Sophia Merelas¹, Rosalind J. Wright^{2,3}, Michelle Bosquet Enlow^{1,4}

¹Boston Children's Hospital, Boston, MA, ²Kravis Children's Hospital, Icahn School of Medicine at Mount Sinai, New York, NY, ³Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York City, NY, ⁴Harvard Medical School, Boston, MA

Introduction

- Internalizing symptoms refer to experiences of emotional distress that are typically internal in nature (e.g., somatic complaints, depression).
- Executive functions refer to a set of core skills used for the cognitive control
 of behavior: 1) inhibitory control, 2) working memory, and 3) cognitive
 flexibility.
- Emotional and cognitive functioning may bidirectionally influence each other over childhood, with the nature of the association changing with development.

This study examined associations among internalizing symptoms (anxiety, social withdrawal) and executive functioning (inhibitory control) in the preschool period and middle childhood.

Methods

Sample:

114 mother-child dyads from Project PRISM, a prospective birth cohort study of the effects of maternal and child stress on child health and development.

Demographics:

- 56% male
- · 35% White, 33% Black/African American, 26% Hispanic/Latino, 6% other
- Maternal education: 15% < high school, 13% high school/GED, 19% some college, 26% college degree, 27% post-college degree
- Annual income: 20% <\$20k. 18% \$20k-\$49k. 28% \$50k-\$99k. 34% \$100k+

Measures:

Collected at 3.5 and 5 years:

- Anxiety and withdrawal symptoms: Maternal report via Child Behavior Checklist (CBCL 1.5-5)
- Inhibitory control: Go/No-Go computer task

Child Behavior Checklist (CBCL 1.5-5)

Example Anxiety Items	Example Withdrawal Items
Too fearful or anxious	Seems unresponsive to affection
Fears certain animals, situations, or places	Shows little interest in things around him/her

Go/No-Go Computer Task

- Child asked to press button to "catch" fish and avoid pressing button when shark appears
- 75% fish / 25% sharks, randomized
- 40 trials

	Response	
Test Item	Go	No-Go
Fish	Hit	Miss
Shark	False Alarm	Correct Inhibition

Inhibitory Control Scores:

- Hit Rate = number of correct Go trials/total Go trials
- Inhibition = number of correct No-Go trials/total No-Go trials
- Sensitivity = calculated from proportion of Hit Rate and Inhibition

Results

Analyses:

- Spearman's correlation coefficients determined associations of anxiety and withdrawal symptoms with inhibitory control within and across time
- Differences in correlation coefficients at 3.5y vs 5y were determined using correlation coefficient difference tests via Fisher-to-z transformation

Findings:

At 3.5 years

 Increased anxiety and withdrawal symptoms each associated with poorer inhibitory control (negative association), particularly in inhibition of incorrect responses.

At 5 years

• Internalizing symptoms and inhibitory control no longer associated; correlation coefficients in **positive** direction.

Across ages

- Inhibitory control was modestly stable: inhibition r_s =.13, sensitivity r_s =.41.
- Symptoms of withdrawal, r_s =.44, and anxiety, r_s =.23, were modestly stable.
- The differences in the correlation coefficients at 3.5y vs 5y were significant for associations of anxiety symptoms with inhibitory control and withdrawal symptoms with inhibitory control.
- Greater inhibition at 3y predicted more anxiety symptoms at 5y, r_s=.25.
- More withdrawal symptoms at 3y predicted lower hit rate at 5y, r_s=-.33.

Results continued:

Concurrent Correlations of Inhibitory Control Scores with Anxiety Symptoms at 3.5 Years and 5 Years

	Anxiety 3.5Y	Anxiety 5Y
Sensitivity	217*	.105
Inhibition	212*	.056

Concurrent Correlations of Inhibitory Control Scores with **Withdrawal Symptoms** at 3.5 Years and 5 Years

	Withdrawal 3.5Y	Withdrawal 5Y
Sensitivity	209*	.101
Inhibition	231*	.121

^{* =} correlation significant at .05 level (2-tailed)

Conclusion

These findings suggest that **emotional** and **cognitive** functioning may **influence** each other over childhood, with the **nature** of the association **changing** with **development**.

Why? Studies have shown a link between inhibitory control and anxiety/withdrawal-related psychopathology (e.g., avoidance-drive behaviors, such as missing school).

Why the developmental change?

- · Executive functioning abilities develop rapidly during this period.
- Environmental changes (e.g., introduction of formalized school/organized extracurricular activities) may reinforce an already-anxious or sociallywithdrawn child's inhibition-related behaviors.
- By age 5, greater anxiety may be reflected in heightened self-monitoring and fear of making errors, explaining a relation between inhibition and anxiety.

What does this mean?

- These findings have implications for how we conceptualize the development of inhibitory control in early life.
- These findings are in line with several etiological theories of anxiety/withdrawal-related psychopathologies (e.g., depression, social phobia, separation anxiety), especially learning-based theories.

More research is needed:

- · Replications with different populations, especially clinical samples
- Further analyses to determine direction and predictive nature of the associations