Poster # B2 **CNS 2020**

Decoding attention control and selection in young and older adults

Xiangfei Hong¹, Jiaqi Wang², Jianan Wang², Junfeng Sun², Jijun Wang¹, Chunbo Li¹, Mingzhou Ding³, Shanbao Tong² ¹Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, Shanghai, China ²School of Biomedical Engineering, Shanghai Jiao Tong University, ³J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida

Introduction

- Attention control and selection can be decoded from multichannel event-related potential (ERP) patterns during cued visual spatial attention tasks [1].
- The decoding accuracy during cue-target interval (attention) control) predicted attentional modulation of target-evoked N1 amplitude, and the decoding accuracy during target processing (attention selection) predicted behavioral performance [1].
- Here we examined how normal aging impacted attention control and selection by decoding multichannel ERP patterns from healthy young and older adults during two cued visual spatial attention tasks.

Methods

Paradigm

(A) Experiment 1: Instructional cueing visual field Target Cue Cue-target interval Delay (200 ms) (1000-1200 ms) (200 ms) (2600 ms) (B) Experiment 2: Probabilistic cueing (~74% valid) visual field

Cue (200 ms) Cue-target interval (1000-1200 ms)

Respond to

Delay

(2600 ms)

Figure 1. Two different cueing strategies of spatial attention task. Instructional cueing was applied in Experiment 1 and probabilistic cueing was applied in Experiment 2. Each subject was required to covertly orient attention to either the left or the right visual location via a cue, and make a button response as accurately and quickly as possible when the target presented later was a plus sign (50% probability).

Data Acquisition and Analyses

• Exp 1: 30 young $(21.3 \pm 1.9 \text{ yrs})$ vs. 20 older $(62.4 \pm 7.5 \text{ yrs})$

- Exp 2: 26 young $(22.0 \pm 1.0 \text{ yrs})$ vs. 31 older $(67.3 \pm 5.7 \text{ yrs})$ • 32- (Exp 1) or 64- (Exp 2) channel scalp EEG recording
- Multivariate pattern classification was performed for cue-related epochs (cue left vs. cue right) and target-related epochs (cued target vs. uncued target) using support vector machine with leave-one-out cross validation [2].
- Cue-related decoding accuracy was correlated with the magnitude of attentional modulation of target-evoked N1.
- Target-related decoding accuracy was correlated with behaviora performance (reaction time, RT).

References:

[1] Hong X, Bo K, Meyyapan S, Tong S, Ding M, (2020), bioRxiv, doi: 10.1101/2020.02.08.940213. [2] Bae GY & Luck SJ, (2018), J Neurosci, 38(2), 409-422.

