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Gaussian Process Joint Models for Estimating Latent Dynamics of Brain and Behavior

• Integrative understanding of neural and behavioral data is increasingly important 
in psychology and cognitive neuroscience. 

• Finding plausible linking functions is the key to understand the mind that describes 
the relationship between manifest variables of brain and behavior.

• Plausible linking functions that connect manifest variables of the brain and 
behavior are essential to understanding the latent processes of the mind.

• We propose a nonparametric version of the joint modeling framework, namely a 
Gaussian process joint model (GPJM) to free this assumption. In particular, we
focus on the brain as a dynamic system and estimate the latent dynamics for 
explaining neural and behavioral observations (e.g., Shine et al., 2019).

INTRODUCTION

• A Gaussian process (GP) is a nonparametric approach for modeling a 
function, compared to linear regression methods relying on a set of regression 
coefficients and explanatory variables.

• Given a set of input 𝑥 = 𝑥!, ⋯ , 𝑥" #, GP assumes that a function 𝑓 is a sample 
from a multivariate normal distribution consisting of a mean function 𝑚 𝑥 and 
a covariance function or a ‘kernel’ 𝑘 𝑥, 𝑥# :

𝑓~𝑁 𝑚 𝑥 , 𝑘 𝑥, 𝑥!
• A kernel models the target function 𝑓 with respect to the similarity of the input:

If two inputs are similar, then their outputs are also likely to be similar.

GPJM: GAUSSIAN PROCESSES AS A LINKING FUNCTION

• We performed a motion tracking task in which participants continually 
reported the average direction of randomly moving dots throughout a trial, 
with a subset of the dots moving in a coherent direction. The degree of 
coherence and direction of motion probabilistically changed every second.

TASK & SIMULATION STUDY

• GPJM can recover underlying dynamics that resemble the ground truth 
reasonably, not only explain the measured neural and behavioral responses.

• In particular, Kronecker-separable kernels can address the similarity of BOLD 
responses across voxels with respect to their spatial relationships.

FMRI EXPERIMENT
• We applied the GPJM to a subset of data from an ongoing study. The GPJM 

was fitted to BOLD responses from 16 ROIs (associated with stimulus 
coherence or participant response) and a joystick movement trajectory.

• Underlying dynamics: The estimated dynamics distinguishes ‘regular’ states 
and deviations from them, each of which is qualitatively different to the other.

• Fits to the data: The latent dynamics estimated by the GPJM explains the 
observed data successfully.

• GPJM can explain neural and behavioral data that are emerging from underlying 
cognitive dynamics estimated in a nonparametric fashion, while also addressing 
the temporal gap between BOLD responses and experimental sequences.

• Kronecker-separable kernels can incorporate spatiotemporal interactions of the 
brain into the model.

• The GP-based structure could be an alternative to linking functions with fixed 
functional forms and provide meaningful insights for understanding brain, 
behavior, and mind.
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The structure of GPJM

(G) The latent dynamics color-coded by clusters based on multidimensional scaling of functional 
coactivation

(H) The average functional connectivity of three clusters
(Note: Clusters 1 & 2: Only the links whose differences from Cluster 3 are greater than ±0.2 are presented for visual clarity.)

(E) Estimated latent dynamics from a three-dimensional model (filtered for visual clarity)
(F) Selected time-series data and model predictions

(A) The shape of data-generating kernels (left) and estimated kernels (right)
(B) Latent dynamics generating the data (top) and estimated dynamics (bottom)
(C) Data (black lines), mean model predictions (colored bold lines), and predictive intervals 

(colored shades)
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• Preliminary examination of the topology: One of the preliminary results 
suggest that the relative position in the embedded space could be related to 
different patterns of functional coactivation.

• In particular, the middle of the topology is characterized by negative 
associations between the left inferior frontal gyrus (“C7” in the figure) and 
other brain regions. Meanwhile, the functional correlation becomes positive 
when the dynamics depart from the middle.

• Recovery analysis: Given underlying dynamics, a spatiotemporal GPJM 
simulates BOLD responses from 27 ‘voxels’ and one joystick movement 
trajectory.

• Spatiotemporal relationships among 27 voxels were modeled using a 
Kronecker product of spatial and temporal radial basis function (a.k.a. 
Gaussian) kernels.

• Joystick movement data were modeled using a Matérn ½ (a.k.a. exponential) 
kernel.

• GPJM is an application of hierarchical GP latent variable models (Lawrence & 
Moore, 2007) to neuroimaging data and behavioral responses.

• GPJM assumes that...
• Both neural and behavioral data are generated by the shared underlying 

dynamics modeled as GPs with respect to time.
• Each latent dimension can contribute to the data with different degrees of 

relevance.
• The hemodynamic lag is (approximately) addressed in estimating the 

latent dynamics.
• Spatiotemporal dynamics can be modeled by a Kronecker-separable 

kernel (e.g., Flaxman, 2015; Shvartsman et al., 2017).
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A visual illustration of the Kronecker-separable spatiotemporal kernel (left) with 
15 ROIs used in the fMRI experiment (right; one in the cerebellum was excluded from the figure)
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